
Solution: Sherlock and Anagrams (HackerRank)

Phil Mayer

June 16, 2022

1 Problem

HackerRank provides an Interview Preparation Kit containing a number of problems spanning programming
topics like data structures, sorting, and searching. After taking some time away from HackerRank, I decided
to pick up a question on dictionaries and hash maps. The “Sherlock and Anagrams” question begins by
defining anagram within the context of the exercise.

Definition 1.1. S1 is an anagram of S2 if the letters of S1 can be rearranged to form S2.

The challenge is to implement a function which accepts an input string and returns the number of a pairs
of substrings which are anagrams of each other. For this challenge, a substring does not include the original
string. I chose the C# programming language because I’m a little rusty with it.

2 Approach

After some thinking about the problem, I decided that my strategy would be to:

1. Compute all substrings of the input s, except for s itself.

2. For each substring, sort its characters alphabetically. For example, the substring baa would be reordered
to aab.

3. Count the frequency f(i) of each sorted substring i within s. For example, if s contains substrings baa
and aba, both would be reordered to aab by alphabetical character sorting. The sorted substring aab
would have frequency 2.

4. Take all sorted substrings with frequency f(i) ≥ 2; these are the substrings for which at least one pair
can be assembled. The number of possible pairs of the underlying, unsorted substrings is given by(
f(i)
2

)
. Aggregate this value for all sorted substrings.

As a sanity check, my first concern was to count the number of expected substrings of a given string.
Counting the number of substrings required a bit of algebra. As it turns out, a string of length n has n
substrings of length 1, n− 1 substrings of length 2, and so on: this is a summation of i for 1 ≤ i ≤ n. The
value for this series is given by the following formula (see “Proofs” section below):

n∑
i=1

i =
(n)(n+ 1)

2

Since the challenge does not consider s to be a substring of itself, the number of substrings is actually one
less than this value.

My justification for the fourth point is given by combinatorics. Since I need to count the number of possible
ways to select k = 2 substrings (disregarding order) from n = f(i) possible substrings of s, I needed to
essentially calculate n choose k, given by

(
n
k

)
. More on this later.

1



3 Solution

My solution begins by computing all substrings of s except for s itself. In the loops below, i represents
the starting position and j represents the substring length. I guard against possibly adding s to the list of
substrings by adding a condition in the inner loop.

var numSubstrings = (s.Length * (s.Length + 1)) / 2 - 1;

var substrings = new List<string>(numSubstrings);

for (var i = 0; i < s.Length; i++) {

for (var j = 1; i + j <= s.Length && !(i == 0 && j == s.Length); j++) {

substrings.Add(s.Substring(i, j));

}

}

Since the challenge is intended to test the user’s ability to use dictionaries and hash maps, I then used a C#
SortedDictionary to count the frequency of each substring within s. I used LINQ here to sort the characters
in each substring.

var repeatFrequency = new SortedDictionary<string, int>();

foreach (var substring in substrings) {

var sortedCharacters = new string(substring.OrderBy(c => c).ToArray());

if (repeatFrequency.ContainsKey(sortedCharacters)) {

repeatFrequency[sortedCharacters]++;

} else {

repeatFrequency[sortedCharacters] = 1;

}

}

Finally, to count the number of anagram pairs within s, I wrote the following. Note that possible refactors
are discussed in the next section.

var numAnagramPairs = 0;

foreach(var frequency in repeatFrequency.Values) {

if (frequency > 1) {

numAnagramPairs += getNumPairs(frequency);

}

}

The function to count the number of pairs (i.e. n choose 2) is defined below.

private static int getNumPairs(int n)

{

if (n < 2) {

return 0;

}

return n * (n - 1) / 2;

}

For my first submission, I implemented a choose function which calculated
(
n
k

)
by the well-known formula(

n
k

)
= n!

k!(n−k)! . After encountering runtime errors for a couple of the HackerRank test cases, I figured that

a brute-force approach (implementing some factorial function) would not be suitable to pass all test cases.
Fortunately, it turns out that for n > 1:

(
n

k

)
=

{
1 k = 0
n(n−1

k−1)
k k > 0

2



Now since we start with k = 2, we arrive at the simplified form used in the code above, since
(
n−1
1

)
=

n− 1.

(
n

2

)
=

n
(
n−1
1

)
2

=
n(n− 1)

2

4 Possible Improvements

I chose to implement my solution in C# because I haven’t worked with the language regularly in several
years. After my first iteration, I realized I could use LINQ to write my calculation for numAnagramPairs
more expressively. In fact, the calculation for numAnagramPairs can be simplified to the expression:

repeatFrequency.Values

.Where(n => n > 1)

.Aggregate(0, (acc, n) => acc + (n * (n - 1) / 2))

Coming from mostly writing JavaScript for the past four years, this more functional solution captures my
original intent in a less imperative style. I’m sure there are other refactors I could make to modernize my C#
code. Perhaps more importantly, I’m also curious to learn about other clever mathematics/combinatorics to
apply here for a more efficient solution.

5 Proofs

Since I’m also rusty on my math, let’s do a few quick proofs.

Theorem 5.1. Let n ∈ N and n > 0. Then
∑n

i=1 i =
(n)(n+1)

2 .

Proof. For the base-case n = 1:
1∑

i=1

i =
(1)(1 + 1)

2
=

2

2
= 1

Now assume the theorem is true for n = k. If we sum up to k + 1, we see that:

k+1∑
i=1

i =

k∑
i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2
k+1∑
i=1

i =
(k + 1)(k + 2)

2

Theorem 5.2. Let n, k ∈ N where 1 < k ≤ n. Then
(
n
k

)
= n

k

(
n−1
k−1

)
.

3



Proof. We already know that
(
n
k

)
= n!

k!(n−k)! . By the definition of factorial:(
n

k

)
=

n!

k!(n− k)!

=
n(n− 1)!

k(k − 1)!(n− k)!

=
n

k
· (n− 1)!

(k − 1)!(n− 1− k + 1)!

=
n

k
· (n− 1)!

(k − 1)!([n− 1]− [k − 1])!(
n

k

)
=

n

k
·
(
n− 1

k − 1

)

4


