
UNIQUE FACTORIZATION NOTES

PHIL MAYER

1. Rings

Definition 1.1. Suppose R is a set equipped with two binary operations. Then (R,+, ·)
is said to be a ring if and only if (R,+) is a commutative group and (R, ·) is closed.

Since (R,+) is a commutative group, (R,+) is closed, associative, has an identity, and
each element in the set has an inverse. We will require our rings to behave nicely on the
second binary operation as well: we assume (R, ·) is associative, has an identity, and is
commutative. While all elements may not necessarily have inverses, these rings will still
behave nicely for our purposes. For example, the distributive law a(b+c) = ab+ac applies.
Some examples of these rings (called commutative rings with identity) are:

(1) The number systems including (Z,+, ·), (Q,+, ·), (R,+, ·), and (C,+, ·).

(2) (Zn,+, ·) where a ∈ Zn has an inverse if and only if gcd({a, n}) = 1.

(3) Polynomials with coefficients taken from a commutative ring with identity.

Much like how groups have subgroups, rings also have sub-structures called subrings:

Definition 1.2. S ⊂ R is a subring of R if and only if ∀a, b ∈ S, a − b ∈ S and ab ∈ S.
Alternatively, S is a subring of R if and only if S ⊂ R, (S,+) is a subgroup of (R,+), and
(S, ·) is closed.

Definition 1.3. I ⊂ R is called an ideal in R if and only if ∀a, b ∈ I, a − b ∈ I and
∀r ∈ R, ra ∈ I.

So an ideal is a subring with an extra condition. One example of an ideal is nZ in Z. Let’s
prove that this is true.

Proof. Let s, t ∈ nZ and let k ∈ Z.
Then s = na and t = nb for some a, b ∈ Z.
But na− nb = n(a− b) ∈ nZ.
Additionally, notice that ks = k(na) = n(ka) ∈ nZ.
So nZ is an ideal in Z. �
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An example of a subring that is not an ideal is Z ⊂ Q, since ∀m,n ∈ Z,m − n ∈ Z and
mn ∈ Z, yet choosing r = 1

2 and a = 3, ra = 3
2 /∈ Z.

The final property common in rings that will be helpful while studying unique factorization
is the unit.

Definition 1.4. We say a is a unit if and only if a has an inverse, denoted a−1.

Interestingly, the set of units of a ring form a group under multiplication. This can be
proven easily, mostly from the definition of rings. Since we limit our discussion to commu-
tative rings with identity (that are associative), inverses are the only property left to show.
Since each unit has an inverse, the set is clearly a group. It can also be shown that in Zn,
a is a unit if and only if gcd({a, n}) = 1.
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2. Integral Domains

The majority of the rings we will work with while studying unique factorization are inte-
gral domains. We will expand on integral domains, adding more properties at each level
of abstraction in order to define unique factorization domains, principal ideal domains,
Euclidean domains, and fields. In order to define an integral domain, we first define zero-
divisors.

Definition 2.1. We say that a, b ∈ R are zero-divisors if and only if a, b 6= 0 and ab = 0.
A single element a ∈ R is a zero-divisor if and only if ∃b ∈ R such that ab = 0.

Note that if a, b are not zero-divisors then ab = 0 =⇒ a = 0 or b = 0. For a ∈ Zn, a is
a zero-divisor if and only if a is not relatively prime to n. For example in Z12, 4 · 3 = 12
mod 12 = 0.

Definition 2.2. A ring D is an integral domain if and only if D is a commutative ring
with identity and no zero-divisors.

As we go forward, we will assume R is just an integral domain (denoted D) unless otherwise
stated. The standard examples of infinite and finite integral domains are Z and Zp (where
p ∈ P), respectively. Let’s prove the following facts about integral domains.

Remark 2.3. If a is a non-zero-divisor, then a 6= 0 can be cancelled. So if ab = ac then
b = c.

Proof. Suppose ab = ac.
Then ab− ac = 0 so a(b− c) = 0.
∴ b = c �

This fact isn’t hard to see in action. For example, in Z12, we might ask if 3 ·4 = 3 ·8. After
cancelling the common factor of 3, we see 4 6= 8.

Remark 2.4. A unit is never a zero-divisor.

Proof. Suppose a, b ∈ R, where a is a unit and ab = 0.
So a−1(ab) = a−1 · 0 =⇒ b = 0. �
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3. Unique Factorization Domains

Next, we consider integral domains in which elements can be factored uniquely into a
product of irreducible elements. Integral domains equipped with this property are called
unique factorization domains. In order to define them, we first need to understand what
it means to factor an element into irreducibles.

Definition 3.1. We say that a is an associate of b if and only if a = b · u where u is a
unit.

Definition 3.2. An element c ∈ R is irreducible if and only if when c = ab, then a or b
is a unit.

In Z, a and −a are associates and the prime numbers are irreducible. For example, 3 =
−(−3) so 3 and −3 are associates and 3 is irreducible. It will help (for our purposes) to
distinguish between irreducible and prime. While in settings like Z the definitions of prime
and irreducible and equivalent, we need to formalize these ideas in order to discuss them
in a more abstract setting.

Definition 3.3. An element c ∈ R is prime if and only if when a | bc, then a | b or a | c.

For example, consider 60 in 2Z. Clearly 60 = 2 · 30 = 6 · 10, and technically 2, 30, 6, and
10 are all irreducible in 2Z. But 2 | 6 · 10, yet 2 - 6 and 2 - 10 in 2Z.

We now arrive at the definition of a unique factorization domain, which encapsulates the
theorem that follows it.

Definition 3.4. An integral domain D is called a unique factorization domain if and
only if every element a ∈ D that is neither 0 nor a unit can be factored into a product of
a finite number of irreducibles. Furthermore, if a = (p1 · · · · · pr) = (q1 · · · · · qs) where pi, qi
are irreducibles and r = s, then pi is an associate of qi.

Theorem 3.5. (Unique Factorization Theorem) In a unique factorization domain D, any
a ∈ D can be factored uniquely into a product of irreducibles, up to units.

So consider R = Z. Notice that since the Unique Factorization Theorem is an extension
of the Fundamental Theorem of Arithmetic, the Unique Factorization Theorem applies in
R. For R = 2Z, the even integers, R is not a unique factorization domain. Firstly, R
is not an integral domain (because it does not contain an identity). Additionally, while
we can factor elements in R, for example 4 = 2 · 2, elements like 6 are irreducible since
3 /∈ 2Z. While in a ∈ R = 2Z can be factored if and only if 4 divides a, it is not a unique
factorization domain.
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4. Principal Ideal Domains

The next class of ring we will study is called a principal ideal domain. In order to investigate
them, we need to define the concept of a principal ideal, building on the notion of an ideal
in an ordinary ring.

Definition 4.1. I ⊂ R is a principal ideal generated by a ∈ I if and only if I = 〈a〉 =
{ra | r ∈ R, a ∈ I}. If R is not commutative, then the principal ideal is generated by
ra+ ar: I = 〈a〉 = {ra+ ar | r ∈ R, a ∈ I}.
Definition 4.2. D is called a principal ideal domain if and only if any ideal in D is
principal.

The standard example of a principal ideal domain is Z. So given I ⊂ Z, we might ask
what its generators are. Since the ideals in Z look like nZ, the generator for each I is the
least positive integer in I. So the ideal {0,±3,±6,±9, · · · } is generated by 3, denoted 〈3〉.
Now observe that 〈6〉 = {0,±6,±12,±18, · · · } and 3 | 6. In general, you can show that for
a, b ∈ R, 〈b〉 ⊂ 〈a〉 if and only if a | b. It can also be shown that for a, b ∈ R, 〈a〉 = 〈b〉 if
and only if a and b are associates.

Now suppose we have a collection of sets Ai. Then ∪iAi = A means that an element a ∈ A
lies in at least one Ai. We will use the following theorems to see that every principal ideal
domain is a unique factorization domain.

Theorem 4.3. Suppose N1 ⊂ N2 ⊂ · · · where each Ni is an ideal in R, an ascending
chain of ideals. Then N = ∪iNi is an ideal as well.

Proof. Let a, b ∈ N .
Then a ∈ Nj and b ∈ Nk for some j, k ∈ N. Assume without loss of generality that j ≤ k.
But then Nj ⊂ Nk, so a ∈ Nk.
So a− b ∈ Nk and ∀r ∈ R, ra ∈ Nk because Nk is an ideal. �

Theorem 4.4. Let D be a principal ideal domain. If N1 ⊂ N2 ⊂ N3 ⊂ · · · is a sequence
of ideals Ni ∈ D, then ∃k ∈ N such that Nl = Nk ∀l ≥ k. Equivalently, every strictly
ascending chain of ideals in a principal ideal domain is of finite length.

Proof. Let D be a principal ideal domain.
Let N = ∪iNi be a sequence of ideals in D.
Then N = 〈c〉 for some c ∈ D.
So then c ∈ Nk for some k ∈ N.
So N ⊂ Nk since any multiple of c is in N , but N ⊃ Nk so N = Nk. �

Bringing all of these results together, we can then prove the following theorem, which tells
us that we can factor non-zero, non-unit elements in a principal ideal domain. The theorem
that follows it, that every principal ideal domain is a unique factorization domain, will need
a proof for uniqueness.



6 PHIL MAYER

Theorem 4.5. In a principal ideal domain, any non-zero, non-unit element can be written
as a product of irreducible elements.

Proof. Suppose D is a principal ideal domain and that a ∈ D is reducible. If a is irreducible,
then we are done.
Then a = bc for some non-unit elements b, c ∈ D.
Since a | b, 〈a〉 ⊂ 〈b〉.
If both b and c are irreducible, then we are done.
Otherwise, suppose b = st for some non-unit elements s, t ∈ D.
Then 〈b〉 ⊂ 〈s〉.
Continuing the process, we will end up with 〈a〉 ⊂ 〈a1〉 · · · , so we have an ascending chain
of ideals.
Since D is a principal ideal domain, the chain stops: 〈a〉 ⊂ 〈a1〉 ⊂ · · · 〈an〉.
Then a = an · w for some w ∈ D and we have a product of irreducibles. �

Theorem 4.6. Every principal ideal domain is a unique factorization domain

Proof. The previous theorem shows that if D is a principal ideal domain, then for some a ∈
D where a is neither zero nor a unit, a has a factorization a = p1p2 · · · pr into irreducibles.
So let a ∈ D have that same factorization, as well as another: a = q1q2 · · · qs.
Then by a corollary (omitted) for principal ideal domains, we have p1 | (q1q2 · · · qs) =⇒
p1 | qj for some j.
By changing the order of qj in the second factorization, we can assume j = 1, so p1 | q1.
Then q1 = p1u1, and since p1 is an irreducible, u1 is a unit. So p1 and q1 are associates.
We then have p1p2 · · · pr = p1u1q2 · · · qs, and by the cancellation law, p2 · · · pr = u1q2 · · · qs.
Continuing this process, we finally arrive at 1 = u1u2 · · ·urqr+1 · · · qs.
But since the remaining qi are irreducibles, we must have r = s. �
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5. Euclidean Domains

The penultimate class of ring that we will use to study unique factorization is the Euclidean
domain. As a special type of principal ideal domain, Euclidean domains are also unique
factorization domains and integral domains. One approach to defining a Euclidean domain
is the following:

Definition 5.1. Let D be an integral domain equipped with some norm function ν :
D \ {0} → Z+. Then D is a Euclidean domain if and only if ν satisfies the following:

(1) Given a, b 6= 0, ∃q, r with a = bq + r where r = 0 or ν(r) < ν(b).

(2) ν(a) ≤ ν(ab) ∀a, b ∈ D.

We can then show that a Euclidean domain is a type of principal ideal domain by proving
the following theorem. The proof that every Euclidean domain is a unique factorization
domain follows from our previous proof that every principal ideal domain is a unique
factorization domain.

Theorem 5.2. Every Euclidean domain is a principal ideal domain.

Proof. Suppose I is an ideal in D such that I 6= {0}.
We want to show that I is principal (i.e. that it has a single generator).
Pick d ∈ I with d 6= 0 and ν(d) minimum, possible by the Well-Ordering Principle.
Let h ∈ I.
Then h = dq + r for some q, r ∈ D where r = 0 or 0 ≤ ν(r) < ν(d).
So r = h− dq thus r ∈ I (since h, d ∈ I and I is closed).
If ν(r) < ν(d), then this contradicts d being the minimum non-zero element of I.
So r = 0 in either case, so h = dq, meaning every element of I is a multiple of d.
Then I is the principal ideal generated by d.
∴ This holds for all ideals ofD, and so any Euclidean domain is a principal ideal domain. �

Theorem 5.3. Every Euclidean domain is a unique factorization domain.
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6. Fields

The final class of rings of interest to us is fields, the most well-behaved version of a
ring.

Definition 6.1. The set (F,+, ·) is a field if and only if (F,+) is a group and (F, ·) is a
commutative group.

Some common examples include Q, R, C, and Zp. Since fields are Euclidean domains,
they are also principal ideal domains, unique factorization domains, and integral domains.
Thus, they have no-zero divisors for example. We will investigate fields further in our
discussion of polynomials.
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7. Polynomials

We will call D[x] the set of polynomials with coefficients in D, where D is an integral
domain. Typically we will consider Z, Q, or R, though the latter two are fields specifically.
We define a polynomial to be a sum, like the following:

a0 + a1x+ a2x
2 · · ·+ anx

n

with ai = 0 ∀i > n. So polynomials can be thought of as a finite sum of a finite number
of non-zero coefficients. We can write polynomials in summation notion, like p(x) =∑k

i=0 aix
i. While the sum of polynomials is easy to express in symbolic form, the product

of two polynomials (since we will work in a ring) requires more thought. So given p(x) =∑k
i=0 aix

i and q(x) =
∑l

j=0 ajx
j :

p(x) · q(x) =

k+l∑
n=0

cnx
n

with cn = a0bn + a1bn−1 + · · · + anb0. While clunky, treating polynomials as objects in a
ring makes sense for reasons we will see shortly.

Theorem 7.1. The set R[x] of all polynomials in an indeterminate x with coefficients in
a ring R is a ring under polynomial addition and multiplication. If R is commutative, then
so is R[x], and if R has unity 1 6= 0, then 1 is also unity for R[x].

The notion of a polynomial’s degree also comes up in this more formal setting.

Definition 7.2. The degree of a polynomial p(x), deg(p) = n if and only if an 6= 0 and
ai = 0 ∀i > n.

The degree of the sum of two polynomials p and q is found as deg(p+q) = max({deg(p),deg(q)}).
The degree of the product of two polynomials is more complicated, however. While it
might seem that for all polynomials deg(p · q) = deg(p) + deg(q), this result does not nec-
essarily hold for polynomials with coefficients taken from any ring. For example, in Z4,
(2x3 + 3)(2x2 +x) = (4 mod 4)x5 + 2x4 + 2x2 + 3x = 2x4 + 2x2 + 3x. So the formula does
not hold. Instead, one can prove the following fact.

Remark 7.3. For polynomials p(x), q(x) ∈ D[x], deg(p · q) ≤ deg(p) + deg(q).

One of the most convenient facts about taking this more formalized, abstract approach to
studying polynomials is that by studying the ring of that a polynomial’s coefficients are
taken from, we can often draw conclusions about the set of polynomials itself. For example,
it turns out that:

Theorem 7.4. If D is an integral domain, then D[x] is an integral domain as well.

Theorem 7.5. If D is a unique factorization domain, then D[x] is a unique factorization
domain as well.
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Additionally, we can think of D ⊂ D[x] because D can be seen as the set of constant
polynomials. This agrees with what we know about integral domains, since the additive
and multiplicative identities for polynomials are 0 ·x0 = 0 and 1 ·x0 = 1, respectively.

When discussed in terms of unique factorization, it is critical to know where a polynomial’s
coefficients are taken from. For example, in Q[x], 2 = 2x0 is a unit because it has an inverse,
namely 1

2 = 1
2x

0. Yet, in Z[x], 2 is an irreducible polynomial. In C[x], x2+1 = (x+i)(x−i),
but in R[x] it is irreducible. We can also discuss polynomials with coefficients from Zn.
For example in Z2, (x+ 1)2 = x2 + (2 mod 2)x+ 1 = x2 + 1. In the more general setting
Zp where p ∈ P, (x+ 1)p = xp + 1.

If we take a polynomial’s constants from a field (or a Euclidean domain), we have a division
algorithm for polynomials.

Theorem 7.6. (Division Algorithm) If f(x), g(x) ∈ F [x] where F is a field, then ∃q(x), r(x) ∈
F [x] with f(x) = g(x) · q(x) + r(x) and r(x) = 0 or deg(r(x)) < deg(q(x)).

Proof. Assume p(x) and d(x) are monic (the highest-degree term of each has coefficient 1).
Then consider S = {p(x)− d(x)f(x)}.
Let r(x) be a polynomial of minimal degree in S.
So there is a q(x) with p(x)− d(x)q(x) = r(x), or p(x) = d(x) · q(x) + r(x).
Suppose deg(r) ≥ deg(d).
Well (p(x)− d(x)q(x))− xsd(x) = r(x)− xsd(x) where s = deg(r)− deg(d).
But if we call r′(x) = (p(x)− d(x)q(x)− xsd(x)) = p(x)− d(x)(q(x)− xs) then r′(x) ∈ S.
Yet deg(r′) < deg(r), the element with the smallest degree in S. So contradiction.
∴ deg(r) < deg(d). �

We can use the Division Algorithm to write reducible polynomials in a field F [x] as the
product of irreducibles. This comes from the fact that a field is a unique factorization
domain. To summarize:

Theorem 7.7. If F is a field, then every non-constant polynomial f(x) ∈ F [x] can be
factored into a product of irreducible polynomials in F [x], the irreducibles being unique, up
to their order in the factorization and unit (nonzero constant) factors in F .

The list below details some other facts about polynomials that can be useful in the study
of unique factorization.

• An element a ∈ F is a zero of f(x) ∈ F [x] if and only if (x− a) is a factor of f(x)
in F [x]. Equivalently, f(a) = 0 if and only if (x− a) | f(x).

• We need to differentiate between f(x) as a function and as a polynomial. For
example, consider p(x) = x2 + 1 and q(x) = x3 + 1. Both are polynomials in Z2[x].
As polynomials, p(x) 6= q(x), yet as functions they are equal since p(0) = q(0) = 1
and p(1) = q(1) = 0.
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• Let f(x) ∈ F [x], and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if
and only if it has a zero in F , or in other words has a linear factor.

• The previous fact is not true of degree 4. For example, consider x4 + 3x2 + 2 =
(x2 + 2)(x2 + 1). The two factors are then irreducible in Q[x].

• If f(x) ∈ Z[x], then f(x) factors into a product of two polynomials of lower degrees
r and s in Q[x] if and only if it has such a factorization with polynomials of the
same degrees (r and s) in Z[x].

• If f(x) = xn + an−1x
n−1 + · · · + a0 is in Z[x] with a0 6= 0, and if f(x) has a zero

in Q, then it has a zero m ∈ Z and m must divide a0. In other words, if f(x) can
be reduced into a product of linear terms in Z[x], then the product of the constant
terms of each linear factor multiplies to f(x)’s constant term.

• Sometimes we can argue using the degree of a polynomial. If R has no zero-divisors
and f(x), g(x) ∈ R[x] then deg(f(x)g(x)) = deg(f) + deg(g). This is true if R is an
integral domain, for example. In rings like Z4, if two polynomials have leading terms
2x3 and 2x2 respectively, then the product would have leading term (4 mod 4)x5.

• In a finite field, we can try all elements to find the roots. For example, in Z5,
x3 + 2x2 + 1 is irreducible because none of its elements satisfy x3 + 2x2 + 1 = 0.
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8. Greatest Common Divisors

The concept of a greatest common divisor for an algebraic object also comes up here. There
are two closely-related definitions we can use.

Definition 8.1. d is the greatest common divisor of a and b if and only if:

(1) d | a and d | b.

(2) If c | a and c | b, then c | d. A second definition of the greatest common divisor
(for a less general setting with ordering, for example in the integers) has conclusion
c ≤ d instead.

To find the greatest common divisor in a unique factorization domain, simply factor the
elements of a and b into a product of irreducibles and find the greatest product of common
factors. For example, given polynomials a(x) = (x − 1)3(x + 2)5(x − 3)4 and b(x) =
(x− 1)2(x+ 2)5(x− 6)2:

gcd({a(x), b(x)}) = (x− 1)2(x+ 2)5

In a Euclidean domain, we can use the division algorithm where we divide a by b and
obtain some remainder r. If r = 0 or r = 1, then the greatest common divisor is b or
1, respectively. For all other remainders after the first step, divide b by r. Continue to
divide the divisors and remainders from the previous step until a remainder of 0 or 1 is
achieved. The previous remainder (the current divisor) is the greatest common divisor. We
can also use the Euclidean algorithm to write the greatest common divisor as a linear
combination of the two multiples.
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9. The Algebraic Integers

In order to define the algebraic integers, we first need to understand what makes an integer
square-free. From here, we define the algebraic integers, their norm, and the Gaussian
integers in the next section.

Definition 9.1. Some d ∈ Z is square-free if and only if d = ±p1 · p2 · · · · · pr where each
pi ∈ P is a distinct prime. So d is not divisible by any square.

With some thought, it can be seen that 6 is square-free, but 8 = 4 · 2 is not. Letting d be
some square-free integer, we can then define the set Q

√
d = {a+ b

√
d | a, b ∈ Q}. Clearly

Q
√
d ⊂ R if d > 0 and Q

√
d ⊂ C if d < 0. Let’s prove Q

√
d is a field.

Proof. Let s, t ∈ Q
√
d.

Then s = a1 + b1
√
d and t = a2 + b2

√
d for some a1, a2, b1, b2 ∈ Q.

To show (Q
√
d,+) is a commutative group, observe that:

s+ t = (a1 + b1
√
d) + (a2 + b2

√
d) = (a1 + a2) + (b1 + b2)

√
d, so (Q

√
d,+) is closed.

Since it is well-known that addition in C is both associative and commutative, (Q
√
d,+)

is associative and commutative as well.
Q
√
d has additive identity 0 + 0

√
d = 0, and an additive inverse s−1 = −a1 − b1

√
d exists

for each s.
To show (Q

√
d, ·) is a commutative group, observe that:

st = (a1 + b1
√
d)(a2 + b2

√
d) = (a1a2 + b1b2d) + (a1b2 + a2b1)

√
d, so (Q

√
d, ·) is closed.

Multiplication in C is associative and commutative, so (Q
√
d, ·) is both associative and

commutative.
Q
√
d has multiplicative identity 1 + 0

√
d, and a multiplicative inverse s−1 = 1

a1+b1
√
d
·

a1−b1
√
d

a1−b1
√
d

exists for each s.

So Q
√
d is a field. �

While the larger set Q
√
d is a field, a smaller version called the algebraic integers is

not.

Definition 9.2. The set Z
√
d is called the algebraic integers, defined as the following

where a, b ∈ Z:

Z
√
d =

{
a+ b

√
d d ≡ 2 or 3 mod 4

a
2 + b

2

√
d d ≡ 1 or 4 mod 4

While Z
√
d is not a field, it is still an integral domain. We might ask: is it a unique

factorization, principal ideal, or Euclidean domain as well? If not, does Z
√
d fall into one

of these categories under any conditions? In order to start investigating these questions,
we have to equip the algebraic integers with a norm:
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Definition 9.3. ν : Z
√
d\{0} → Z is the norm function in Z

√
d, given by ν(a+ b

√
d) =

(a+ b
√
d)(a− b

√
d) = a2 − b2d.

Recall that in order for an integral domain D to be a Euclidean domain, ν : D \ {0} → Z+

must exist and satisfy the following properties:

(1) Given a, b 6= 0, ∃q, r with a = bq + r where r = 0 or ν(r) < ν(b).

(2) ν(a) ≤ ν(ab) ∀a, b ∈ D.

The standard examples are ν(x) = |x| on Z and ν(p(x)) = deg(p(x)) for p(x) in some field

F [x] with coefficients taken from a field F . In Z
√
d, the norm function does not always

satisfy both conditions, and so Z
√
d is not a Euclidean domain in general. It turns out

that Z
√
d is a Euclidean domain for the following values of d:

d = −11,−7,−3,−2,−1, 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73

More generally, Z
√
d is a unique factorization domain for:

d = −1,−2,−3,−7,−11,−19,−43,−67,−163

Let’s now consider D = Z(
√
−3). In D, 4 = 2 · 2 = (1 + 2

√
−3)(1 − 2

√
−3). We know

that D is a unique factorization domain (given above), and the fact that we have two
factorizations does not contradict it. Both feature two irreducible elements, but we need
to show that the factors are associates in order to be sure. Let’s first prove that one of the
factors is irreducible (which can be extended to the other three).

Proof. Assume (1 +
√
−3) is reducible in D.

Then (1 +
√
−3) = (a+ b

√
−3)(c+ d

√
−3).

Taking the norm of both sides, we have ν(1 +
√
−3) = ν((a+ b

√
−3)(c+ d

√
−3)).

But ν(1 +
√
−3) = (1)2 + 3 · (1)2 = 4 and separating the two norms:

ν((a+ b
√
−3)(c+ d

√
−3)) = ν(a+ b

√
−3)ν(c+ d

√
−3).

So we need a2 + 3 · b2 = c2 + 3 · d2 = ±2.
Then clearly b = 0 and d = 0 since each term is positive, so a = ±

√
2 and c = ±

√
2.

But a, c ∈ Z so we have a contradiction.
So (1 +

√
−3) is irreducible in D. �

We now attempt to prove that 2 and (1 +
√
−3) are associates. The proof can be adapted

to show that 2 and (1−
√
−3) are associates as well.

Proof. If the two factors are indeed associates, then we can write 2 · u = (1 +
√
−3).

Well consider u = (12 + 1
2

√
−3).

Clearly 2 · (12 + 1
2

√
−3) = (1 +

√
−3), but we need to show (12 + 1

2

√
−3) is a unit.

So ν(12 + 1
2

√
−3) = (12)2 + 3 · (12)2 = 1. So 2 and (1 +

√
−3) are associates, and this agrees

with the Unique Factorization Theorem. �
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It is also worth investigating whether or not elements are prime in Z
√
d. For example, 2 is

irreducible but not prime in Z(
√
−3).

Proof. Suppose 2 | (1 +
√
−3)(1−

√
−3).

But 2 - (1 +
√
−3) and 2 - (1−

√
−3).

Yet suppose it does: then (1 +
√
−3) = 2 · (a+ b

√
−3) = 2a+ 2b

√
−3.

But then a = 1
2 , yet a ∈ Z, so we have a contradiction.

So 2 is not prime in Z(
√
−3). �
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10. The Gaussian Integers

Definition 10.1. The set Z[i] is called the Gaussian integers. It is a special case of the
algebraic integers defined as Z[i] = {a+ bi | a, b ∈ Z}.

Clearly, Gaussian integers are just algebraic integers with d = −1. As previously discussed,
Z[i] is a Euclidean domain, and thus a principal ideal domain and a unique factorization
domain. Note that for some Gaussian integer (a + bi) ∈ Z[i], ν(a + bi) = a2 + b2. Since

units in the algebraic integers have norm ±1, the units in Z
√
d are ±1,±i. This changes

the reducibility of elements. For example, while 2 is irreducible in Z, it is reducible in Z[i]
because 2 = (1 + i)(1− i). Overall, the irreducibles in Z[i] have three forms:

(1) p = i± 1, with norm 2.

(2) p ≡ 3 mod 4, with norm p2.

(3) x = a+ bi where a2 + b2 = p and p ≡ 1 mod 4.

Let’s prove these facts.

Proof. Assume 1 + i is reducible.
Then 1 + i = (a+ bi)(c+ di) for some a, b, c, d ∈ Z.
But ν(1 + i) = 2, so one of the factors must be a unit. �

Proof. Suppose p ≡ 3 mod 4 and that we can factor it into p = (a + bi)(c + di) for some
a, b, c, d ∈ Z.
Then ν(p) = p2 = (a2 + b2)(c2 + d2).
=⇒ a2 + b2 = p and c2 + d2 = p.
Mod 4, the only squares are 0 and 1.
So a2 + b2 ≡ 0, 1, or 2 mod 4, and same for c2 + d2.
But since p ≡ 3 mod 4, p2 = 1. So both a2 + b2, c2 + d2 = 1.
So p is irreducible. �

Proving the third fact follows trivially from the following theorem originally proposed by
Fermat:

Theorem 10.2. The equation a2 + b2 = p is solvable in the integers if and only if p ≡ 1
mod 4.

Let’s conclude with some factorizations in Z[i]. Suppose we take 2 + 5i. Its norm is
ν(2 + 5i) = 22 + 52 = 4 + 25 = 29. Since 29 is prime in Z, 29 ≡ 1 mod 4 so 2 + 5i is
irreducible in Z[i]. How about 3 + 4i? Well ν(3 + 4i) = 32 + 42 = 9 + 16 = 25. So we
need to find a, b, c, d ∈ Z such that 25 = 5 · 5 = (a2 + b2)(c2 + d2). Note that neither of the
two factors can have norm −5 since a, b, c, d ∈ Z and the square of each is non-negative.
After a small amount of trial and error, the factorization 3 + 4i = (−1 + 2i)(−1− 2i) can
be found.


