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1. Getting Started

Definition 1.1. The Archimedian Property of the real numbers says ∀x ∈ R,∃n ∈ N
such that x < n.

Definition 1.2. A set S is bounded if and only if ∃M ∈ R such that ∀s ∈ S, |s| ≤ M .
We say that a set is bounded above if ∃M ∈ R such that s ≤M , or bounded below if
∃m ∈ R such that m ≤ s.
Definition 1.3. A set is unbounded if and only if ∀M ∈ R,∃s ∈ S such that M < |s|.
Definition 1.4. A set S ⊂ R has supremum sup(S) = sup(a, b) = b if and only if b is
an upper bound for S and b is the least of all other upper bounds. So ∀x ∈ S, x ≤ b and
∀β < b ∃s ∈ S such that β < s.

Definition 1.5. We define the infimum of a set S similarly: ∀x ∈ S, a ≤ x and
∀α > a ∃s ∈ S such that a < α.

Definition 1.6. For some ε > 0, define the ball of radius ε around x ∈ R as Bε(x) =
(x− ε, x+ ε).

2. Sequences

Definition 2.1. We say {xn}∞n=1 ⊂ R is a sequence in the reals. We denote it {xn}.
Definition 2.2. {xn} is monotone increasing if and only if ∀n ∈ N, xn ≤ xn+1. Simi-
larly, {xn} is monotone decreasing if and only if ∀n ∈ N, xn ≥ xn+1.

Definition 2.3. A sequence {xn} is bounded if and only if ∃M ∈ R such that ∀n ∈
N, |xn| ≤ M . Bounded above and below can be defined similarly, based on the definition
of boundedness of sets.

Definition 2.4. A sequence {xn} converges to some limit L if and only if ∀ε > 0,∃K ∈ R
such that ∀n > K,n ∈ N, |xn − L| < ε.

Definition 2.5. A sequence {xn} does not converge to some limit L if and only if ∃ε > 0
such that ∀K ∈ R,∃n > K such that |xn − L| ≥ ε.
Definition 2.6. A sequence {xn} is Cauchy if and only if ∀ε > 0, ∃K ∈ R such that
∀m,n ∈ N, if m,n > K then |xn − xm| < ε.
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Theorem 2.7 (Squeeze Theorem). Suppose {an}, {bn}, and {cn} are sequences where
{an}, {bn} → L and ∀n ∈ N, an ≤ bn ≤ cn. Then {bn} → L.

To prove the Squeeze Theorem, use the convergence of {an} and {cn} to choose ε1 = ε2 = ε,
then get K1 so that ∀n > K1, |an−L| < ε. This gives us a lower bound on an: L− ε < an.
We get K2 similarly so that cn < L+ ε. The ε/2 trick may also help here.

Theorem 2.8. Let {an} → a and {bn} → b. Then {an ± bn} → a ± b and {anbn} → ab.
If λ ∈ R, then {λan} → λa. If bn 6= 0 ∀n ∈ N and b 6= 0, then {anbn } →

a
b .

Theorem 2.9. {xn} converges ⇐⇒ {xn} Cauchy ⇐⇒ {xn} is bounded and monotone.

Theorem 2.10. Let S be a non-empty set of real numbers which is bounded above. Then
S has a unique supremum.

Theorem 2.11 (Bolzano-Weierstrass). Every bounded sequence {xn} ⊂ R has a convergent
subsequence.

3. Continuity

Definition 3.1. A function f is continuous at c ∈ Dom(f) if and only if ∀{xn} ⊂ Dom(f)
where limn→∞ xn = c, we have limn→∞ f(xn) = f(c).

Theorem 3.2. For all powers p ∈ Z, f(x) = xp is continuous over its domain.

Theorem 3.3. If f and g are continuous functions, then f±g, fg, and f ◦g are continuous
on Dom(f) ∩Dom(g). If g(x) 6= 0 ∀x ∈ Dom(g), then f

g is continuous. So any polynomial

function is continuous.

Definition 3.4. f is discontinuous at c ∈ Dom(f) if and only if ∃{xn} ⊂ Dom(f) such
that limn→∞ xn = c and limn→∞ f(xn) 6= f(c).

Definition 3.5. f is bounded if and only if ∃M ∈ R such that ∀x ∈ Dom(f), |f(x)| ≤M .

Definition 3.6. f has limit L at x = a, or limx→a f(x) = L, if and only if ∀ε > 0, ∃δ > 0
such that ∀x ∈ Dom(f), if 0 < |x− a| < δ then |f(x)− L| < ε.

Definition 3.7 (ε− δ). f is continuous at c ∈ Dom(f) if and only if ∀ε > 0,∃δ > 0 such
that ∀x ∈ Dom(f), if |x− c| < δ, then |f(x)− f(c)| < ε.

Definition 3.8. f is uniformly continuous if and only if ∀ε > 0,∃δ > 0 such that
∀x, y ∈ Dom(f), if |x− y| < δ, then |f(x)− f(y)| < ε.

Theorem 3.9. If f is continuous on a closed, finite interval then f is bounded.

Theorem 3.10 (Extreme Value Theorem). If f is continuous on a closed interval [a, b],
then ∃c ∈ [a, b] such that ∀x ∈ [a, b], f(x) ≤ f(c) and ∃d ∈ [a, b] such that ∀x ∈ [a, b], f(d) ≤
f(x).
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Theorem 3.11 (Intermediate Value Theorem). Suppose f is continuous on a closed in-
terval [a, b], f(a) 6= f(b), and y is between f(a) and f(b). Then ∃c ∈ [a, b] such that
f(c) = y.

Definition 3.12. If a ∈ Dom(f), define

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(x+ h)− f(x)

h

to be the derivative of f at x = a. If this quantity is defined, f is said to be differentiable
at x = a.

Theorem 3.13 (Rolle’s Theorem). If f is continuous on [a, b], differentiable on (a, b), and
f(a) = f(b) = 0, then ∃c ∈ (a, b) such that f ′(c) = 0.

Theorem 3.14 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on
(a, b), then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
Theorem 3.15. If f is continuous on [a, b], f(c) is a maximum where a < c < b, and f
is differentiable at c, then f ′(c) = 0.

Theorem 3.16. If f is differentiable at x = a then f is continuous at a.

Theorem 3.17. If f(x) = g(x) except at x = a, then limx→af(x) = limx→a g(x).

Theorem 3.18 (Product Rule). If f, g are differentiable at x = a then f(x)g(x) is differen-
tiable at x = a as well. The derivative of the product will be (fg)′(a) = f ′(a)g(a)+f(a)g′(a).

Theorem 3.19 (Power Rule). If f(x) = cxp then f ′(x) = (cp)xp−1.

4. Introduction to Topology

Definition 4.1. A set S ⊂ R is open if and only if ∀x ∈ S,∃ε > 0 such that Bε(x) ⊂ S.

Definition 4.2. A set S ⊂ R is closed if and only if R \ S is open.


