STUDY GUIDE: REAL ANALYSIS

PHIL MAYER

1. Getting Started

Definition 1.1. The Archimedian Property of the real numbers says $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}$ such that x < n.

Definition 1.2. A set S is **bounded** if and only if $\exists M \in \mathbb{R}$ such that $\forall s \in S, |s| \leq M$. We say that a set is **bounded above** if $\exists M \in \mathbb{R}$ such that $s \leq M$, or **bounded below** if $\exists m \in \mathbb{R}$ such that $m \leq s$.

Definition 1.3. A set is **unbounded** if and only if $\forall M \in \mathbb{R}, \exists s \in S$ such that M < |s|.

Definition 1.4. A set $S \subset \mathbb{R}$ has supremum $\sup(S) = \sup(a, b) = b$ if and only if b is an upper bound for S and b is the *least* of all other upper bounds. So $\forall x \in S, x \leq b$ and $\forall \beta < b \exists s \in S$ such that $\beta < s$.

Definition 1.5. We define the **infimum** of a set S similarly: $\forall x \in S, a \leq x$ and $\forall \alpha > a \exists s \in S$ such that $a < \alpha$.

Definition 1.6. For some $\epsilon > 0$, define the **ball of radius** ϵ **around** $x \in \mathbb{R}$ as $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$.

2. Sequences

Definition 2.1. We say $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ is a sequence in the reals. We denote it $\{x_n\}$.

Definition 2.2. $\{x_n\}$ is monotone increasing if and only if $\forall n \in \mathbb{N}, x_n \leq x_{n+1}$. Similarly, $\{x_n\}$ is monotone decreasing if and only if $\forall n \in \mathbb{N}, x_n \geq x_{n+1}$.

Definition 2.3. A sequence $\{x_n\}$ is **bounded** if and only if $\exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, |x_n| \leq M$. Bounded above and below can be defined similarly, based on the definition of boundedness of sets.

Definition 2.4. A sequence $\{x_n\}$ converges to some limit L if and only if $\forall \epsilon > 0, \exists K \in \mathbb{R}$ such that $\forall n > K, n \in \mathbb{N}, |x_n - L| < \epsilon$.

Definition 2.5. A sequence $\{x_n\}$ does not converge to some limit L if and only if $\exists \epsilon > 0$ such that $\forall K \in \mathbb{R}, \exists n > K$ such that $|x_n - L| \ge \epsilon$.

Definition 2.6. A sequence $\{x_n\}$ is **Cauchy** if and only if $\forall \epsilon > 0, \exists K \in \mathbb{R}$ such that $\forall m, n \in \mathbb{N}$, if m, n > K then $|x_n - x_m| < \epsilon$.

PHIL MAYER

Theorem 2.7 (Squeeze Theorem). Suppose $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are sequences where $\{a_n\}, \{b_n\} \to L$ and $\forall n \in \mathbb{N}, a_n \leq b_n \leq c_n$. Then $\{b_n\} \to L$.

To prove the Squeeze Theorem, use the convergence of $\{a_n\}$ and $\{c_n\}$ to choose $\epsilon_1 = \epsilon_2 = \epsilon$, then get K_1 so that $\forall n > K_1, |a_n - L| < \epsilon$. This gives us a lower bound on a_n : $L - \epsilon < a_n$. We get K_2 similarly so that $c_n < L + \epsilon$. The $\epsilon/2$ trick may also help here.

Theorem 2.8. Let $\{a_n\} \to a$ and $\{b_n\} \to b$. Then $\{a_n \pm b_n\} \to a \pm b$ and $\{a_nb_n\} \to ab$. If $\lambda \in \mathbb{R}$, then $\{\lambda a_n\} \to \lambda a$. If $b_n \neq 0 \ \forall n \in \mathbb{N}$ and $b \neq 0$, then $\{\frac{a_n}{b_n}\} \to \frac{a}{b}$.

Theorem 2.9. $\{x_n\}$ converges $\iff \{x_n\}$ Cauchy $\iff \{x_n\}$ is bounded and monotone.

Theorem 2.10. Let S be a non-empty set of real numbers which is bounded above. Then S has a unique supremum.

Theorem 2.11 (Bolzano-Weierstrass). Every bounded sequence $\{x_n\} \subset \mathbb{R}$ has a convergent subsequence.

3. Continuity

Definition 3.1. A function f is **continuous** at $c \in \text{Dom}(f)$ if and only if $\forall \{x_n\} \subset \text{Dom}(f)$ where $\lim_{n\to\infty} x_n = c$, we have $\lim_{n\to\infty} f(x_n) = f(c)$.

Theorem 3.2. For all powers $p \in \mathbb{Z}$, $f(x) = x^p$ is continuous over its domain.

Theorem 3.3. If f and g are continuous functions, then $f \pm g$, fg, and $f \circ g$ are continuous on $\text{Dom}(f) \cap \text{Dom}(g)$. If $g(x) \neq 0 \ \forall x \in \text{Dom}(g)$, then $\frac{f}{g}$ is continuous. So any polynomial function is continuous.

Definition 3.4. f is discontinuous at $c \in \text{Dom}(f)$ if and only if $\exists \{x_n\} \subset \text{Dom}(f)$ such that $\lim_{n\to\infty} x_n = c$ and $\lim_{n\to\infty} f(x_n) \neq f(c)$.

Definition 3.5. f is bounded if and only if $\exists M \in \mathbb{R}$ such that $\forall x \in \text{Dom}(f), |f(x)| \leq M$.

Definition 3.6. f has limit L at x = a, or $\lim_{x \to a} f(x) = L$, if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall x \in \text{Dom}(f)$, if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Definition 3.7 $(\epsilon - \delta)$. f is continuous at $c \in \text{Dom}(f)$ if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall x \in \text{Dom}(f)$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Definition 3.8. f is **uniformly continuous** if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall x, y \in \text{Dom}(f)$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Theorem 3.9. If f is continuous on a closed, finite interval then f is bounded.

Theorem 3.10 (Extreme Value Theorem). If f is continuous on a closed interval [a, b], then $\exists c \in [a, b]$ such that $\forall x \in [a, b], f(x) \leq f(c)$ and $\exists d \in [a, b]$ such that $\forall x \in [a, b], f(d) \leq f(x)$.

Theorem 3.11 (Intermediate Value Theorem). Suppose f is continuous on a closed interval $[a,b], f(a) \neq f(b), and y$ is between f(a) and f(b). Then $\exists c \in [a,b]$ such that f(c) = y.

Definition 3.12. If $a \in \text{Dom}(f)$, define

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

to be the **derivative of** f at x = a. If this quantity is defined, f is said to be **differentiable** at x = a.

Theorem 3.13 (Rolle's Theorem). If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b) = 0, then $\exists c \in (a, b)$ such that f'(c) = 0.

Theorem 3.14 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on (a, b), then $\exists c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 3.15. If f is continuous on [a, b], f(c) is a maximum where a < c < b, and f is differentiable at c, then f'(c) = 0.

Theorem 3.16. If f is differentiable at x = a then f is continuous at a.

Theorem 3.17. If f(x) = g(x) except at x = a, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Theorem 3.18 (Product Rule). If f, g are differentiable at x = a then f(x)g(x) is differentiable at x = a as well. The derivative of the product will be (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Theorem 3.19 (Power Rule). If $f(x) = cx^p$ then $f'(x) = (cp)x^{p-1}$.

4. INTRODUCTION TO TOPOLOGY

Definition 4.1. A set $S \subset \mathbb{R}$ is **open** if and only if $\forall x \in S, \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset S$. **Definition 4.2.** A set $S \subset \mathbb{R}$ is **closed** if and only if $\mathbb{R} \setminus S$ is open.