STUDY GUIDE: REAL ANALYSIS

PHIL MAYER

1. Getting Started

Definition 1.1. The Archimedian Property of the real numbers says $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}$ such that $x<n$.
Definition 1.2. A set S is bounded if and only if $\exists M \in \mathbb{R}$ such that $\forall s \in S,|s| \leq M$. We say that a set is bounded above if $\exists M \in \mathbb{R}$ such that $s \leq M$, or bounded below if $\exists m \in \mathbb{R}$ such that $m \leq s$.
Definition 1.3. A set is unbounded if and only if $\forall M \in \mathbb{R}, \exists s \in S$ such that $M<|s|$.
Definition 1.4. A set $S \subset \mathbb{R}$ has supremum $\sup (S)=\sup (a, b)=b$ if and only if b is an upper bound for S and b is the least of all other upper bounds. So $\forall x \in S, x \leq b$ and $\forall \beta<b \exists s \in S$ such that $\beta<s$.
Definition 1.5. We define the infimum of a set S similarly: $\forall x \in S, a \leq x$ and $\forall \alpha>a \exists s \in S$ such that $a<\alpha$.
Definition 1.6. For some $\epsilon>0$, define the ball of radius ϵ around $x \in \mathbb{R}$ as $B_{\epsilon}(x)=$ $(x-\epsilon, x+\epsilon)$.

2. Sequences

Definition 2.1. We say $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ is a sequence in the reals. We denote it $\left\{x_{n}\right\}$.
Definition 2.2. $\left\{x_{n}\right\}$ is monotone increasing if and only if $\forall n \in \mathbb{N}, x_{n} \leq x_{n+1}$. Similarly, $\left\{x_{n}\right\}$ is monotone decreasing if and only if $\forall n \in \mathbb{N}, x_{n} \geq x_{n+1}$.
Definition 2.3. A sequence $\left\{x_{n}\right\}$ is bounded if and only if $\exists M \in \mathbb{R}$ such that $\forall n \in$ $\mathbb{N},\left|x_{n}\right| \leq M$. Bounded above and below can be defined similarly, based on the definition of boundedness of sets.
Definition 2.4. A sequence $\left\{x_{n}\right\}$ converges to some limit L if and only if $\forall \epsilon>0, \exists K \in \mathbb{R}$ such that $\forall n>K, n \in \mathbb{N},\left|x_{n}-L\right|<\epsilon$.
Definition 2.5. A sequence $\left\{x_{n}\right\}$ does not converge to some limit L if and only if $\exists \epsilon>0$ such that $\forall K \in \mathbb{R}, \exists n>K$ such that $\left|x_{n}-L\right| \geq \epsilon$.
Definition 2.6. A sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\forall \epsilon>0, \exists K \in \mathbb{R}$ such that $\forall m, n \in \mathbb{N}$, if $m, n>K$ then $\left|x_{n}-x_{m}\right|<\epsilon$.

PHIL MAYER
Theorem 2.7 (Squeeze Theorem). Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ are sequences where $\left\{a_{n}\right\},\left\{b_{n}\right\} \rightarrow L$ and $\forall n \in \mathbb{N}, a_{n} \leq b_{n} \leq c_{n}$. Then $\left\{b_{n}\right\} \rightarrow L$.

To prove the Squeeze Theorem, use the convergence of $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ to choose $\epsilon_{1}=\epsilon_{2}=\epsilon$, then get K_{1} so that $\forall n>K_{1},\left|a_{n}-L\right|<\epsilon$. This gives us a lower bound on $a_{n}: L-\epsilon<a_{n}$. We get K_{2} similarly so that $c_{n}<L+\epsilon$. The $\epsilon / 2$ trick may also help here.

Theorem 2.8. Let $\left\{a_{n}\right\} \rightarrow a$ and $\left\{b_{n}\right\} \rightarrow b$. Then $\left\{a_{n} \pm b_{n}\right\} \rightarrow a \pm b$ and $\left\{a_{n} b_{n}\right\} \rightarrow a b$. If $\lambda \in \mathbb{R}$, then $\left\{\lambda a_{n}\right\} \rightarrow \lambda a$. If $b_{n} \neq 0 \forall n \in \mathbb{N}$ and $b \neq 0$, then $\left\{\frac{a_{n}}{b_{n}}\right\} \rightarrow \frac{a}{b}$.
Theorem 2.9. $\left\{x_{n}\right\}$ converges $\Longleftrightarrow\left\{x_{n}\right\}$ Cauchy $\Longleftrightarrow\left\{x_{n}\right\}$ is bounded and monotone.
Theorem 2.10. Let S be a non-empty set of real numbers which is bounded above. Then S has a unique supremum.

Theorem 2.11 (Bolzano-Weierstrass). Every bounded sequence $\left\{x_{n}\right\} \subset \mathbb{R}$ has a convergent subsequence.

3. Continuity

Definition 3.1. A function f is continuous at $c \in \operatorname{Dom}(f)$ if and only if $\forall\left\{x_{n}\right\} \subset \operatorname{Dom}(f)$ where $\lim _{n \rightarrow \infty} x_{n}=c$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Theorem 3.2. For all powers $p \in \mathbb{Z}, f(x)=x^{p}$ is continuous over its domain.
Theorem 3.3. If f and g are continuous functions, then $f \pm g, f g$, and $f \circ g$ are continuous on $\operatorname{Dom}(f) \cap \operatorname{Dom}(g)$. If $g(x) \neq 0 \forall x \in \operatorname{Dom}(g)$, then $\frac{f}{g}$ is continuous. So any polynomial function is continuous.
Definition 3.4. f is discontinuous at $c \in \operatorname{Dom}(f)$ if and only if $\exists\left\{x_{n}\right\} \subset \operatorname{Dom}(f)$ such that $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$.

Definition 3.5. f is bounded if and only if $\exists M \in \mathbb{R}$ such that $\forall x \in \operatorname{Dom}(f),|f(x)| \leq M$.
Definition 3.6. f has limit L at $x=a$, or $\lim _{x \rightarrow a} f(x)=L$, if and only if $\forall \epsilon>0, \exists \delta>0$ such that $\forall x \in \operatorname{Dom}(f)$, if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$.
Definition $3.7(\epsilon-\delta)$. f is continuous at $c \in \operatorname{Dom}(f)$ if and only if $\forall \epsilon>0, \exists \delta>0$ such that $\forall x \in \operatorname{Dom}(f)$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Definition 3.8. f is uniformly continuous if and only if $\forall \epsilon>0, \exists \delta>0$ such that $\forall x, y \in \operatorname{Dom}(f)$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

Theorem 3.9. If f is continuous on a closed, finite interval then f is bounded.
Theorem 3.10 (Extreme Value Theorem). If f is continuous on a closed interval $[a, b]$, then $\exists c \in[a, b]$ such that $\forall x \in[a, b], f(x) \leq f(c)$ and $\exists d \in[a, b]$ such that $\forall x \in[a, b], f(d) \leq$ $f(x)$.

Theorem 3.11 (Intermediate Value Theorem). Suppose f is continuous on a closed interval $[a, b], f(a) \neq f(b)$, and y is between $f(a)$ and $f(b)$. Then $\exists c \in[a, b]$ such that $f(c)=y$.
Definition 3.12. If $a \in \operatorname{Dom}(f)$, define

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to be the derivative of f at $x=a$. If this quantity is defined, f is said to be differentiable at $x=a$.

Theorem 3.13 (Rolle's Theorem). If f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)=0$, then $\exists c \in(a, b)$ such that $f^{\prime}(c)=0$.

Theorem 3.14 (Mean Value Theorem). If f is continuous on $[a, b]$ and differentiable on (a, b), then $\exists c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 3.15. If f is continuous on $[a, b], f(c)$ is a maximum where $a<c<b$, and f is differentiable at c, then $f^{\prime}(c)=0$.
Theorem 3.16. If f is differentiable at $x=a$ then f is continuous at a.
Theorem 3.17. If $f(x)=g(x)$ except at $x=a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
Theorem 3.18 (Product Rule). If f, g are differentiable at $x=a$ then $f(x) g(x)$ is differentiable at $x=a$ as well. The derivative of the product will be $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.
Theorem 3.19 (Power Rule). If $f(x)=c x^{p}$ then $f^{\prime}(x)=(c p) x^{p-1}$.

4. Introduction to Topology

Definition 4.1. A set $S \subset \mathbb{R}$ is open if and only if $\forall x \in S, \exists \epsilon>0$ such that $B_{\epsilon}(x) \subset S$.
Definition 4.2. A set $S \subset \mathbb{R}$ is closed if and only if $\mathbb{R} \backslash S$ is open.

