
NUMBER THEORY MIDTERM STUDY GUIDE

PHIL MAYER

1. Divisibility and Prime Numbers

Number theory has to do with the natural numbers and the integers: N = {0, 1, 2, · · · }
and Z = {· · · − 2,−1, 0, 1, 2, · · · } respectively. We may also be interested in Q, the set of
ratios of integers. For the most part, the integers have the most interesting properties for
our purposes. For example, Z is closed under addition, subtraction, and multiplication,
but isn’t closed under division in general. It has cancellation instead, which is almost as
nice.

Definition 1.1. For a, b, c ∈ Z, if ab = ac, then a can cancel. We are left with b = c.

Division does work at times. The notion of divisibility comes up frequently in our theorems
and proofs.

Definition 1.2. Suppose a, b ∈ Z and a 6= 0. Then a divides b if and only if ac = b for
some c ∈ Z. We denote this a | b and say a is a divisor or factor of b. If a does not divide
b, it may be denoted a - b.

By the axioms of arithmetic, 0 cannot be a factor for any number other than itself: ∀x ∈
Z, 0 - x. Also give by basic arithmetic, ∀x ∈ Z, 1 | x because 1 · x = x. We should also
establish that if a | c by ab = c, then b | c as well. It is also true that if a | c, then −a | c.
By convention, however, when we talk about a number’s set of divisors, we only refer to
the positive divisors. Let’s now use what we know to prove some theorems:

Theorem 1.3. ”Divides” is a transitive relation. So ∀a, b, c ∈ Z with ab 6= 0, if a | b and
b | c then a | c.

Proof. Let a, b, c ∈ Z with a 6= 0 and b 6= 0.
Assume a | b and b | c. So ∃x, y ∈ Z such that ax = b and by = c.
So (ax)y = c =⇒ a(xy) = c.
Since xy ∈ Z, a | c. �

Theorem 1.4. Let a, b, x, y, d ∈ Z with d 6= 0. If d | a and d | b then d | ax + by.

Proof. Let a, b, x, y, d ∈ Z with d 6= 0.
Assume d | a and d | b. So ∃p, q ∈ Z such that dp = a and dq = b.
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Now ax + by = (dp)x + (dq)y = d(px + qy).
So d | ax + by. �

Here ax + by is called a linear combination of a and b. This fact is important: we now
know that if d divides a and b, then d divides any linear combination of a and b. The
most common uses of this fact are for the linear combinations a− b and a + b. Finally, we
introduce the set of primes, denoted P.

Definition 1.5. Let p ∈ N with p > 1. Then p is prime if and only if its set of divisors is
{1, p}. Otherwise p is called composite. Note that 0 and 1 are neither prime nor composite.
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2. The Well-Ordering Principle

In the last section, we examined what makes N and Z special. One of the final proper-
ties that is useful on both systems is ordering: we can compare with the symbol <, for
example.

Theorem 2.1. (Well-Ordering) Every non-empty subset T of N has a least element. In
other words, if T 6= ∅ and T ⊂ N then ∃t ∈ T such that ∀s ∈ T, t ≤ s.

For example T = N has least element 0, T = 2N + 1 (the odd natural numbers) has least
element 1, and T = P has least element 2. Yet T = {n ∈ N - n2 < n} has no least element
since ∀n ∈ N, n2 ≥ n, so T = ∅. On the reals, a set like the unit interval [0, 1] ⊂ R does
not have Well-Ordering. Even though 0 is its least element, we can choose a subset like
T0 = (0, 1] that has no least element.

Well-Ordering is useful in proofs by contradiction. For example, let’s try to prove the
following well-known fact. Our proof will use the following lemma, which can be proven
by its contrapositive.

Lemma 2.2. If x, y ∈ R are positive and if 1 ≤ y < x then 1 ≤ √y <
√
x.

Theorem 2.3.
√

2 is irrational.

Proof. Assume
√

(2) is rational. Then
√

2 = a
b for some a, b ∈ N with a, b 6= 0.

Let T = {k
√

2 ∈ N | k ∈ N \ {0}}.
T ⊂ N because we required that ∀k

√
2 ∈ T, k

√
2 ∈ N.

T 6= ∅ because if we take k = b, then b
√

2 = b · ab = a ∈ N, so b
√

2 ∈ T .

By Well-Ordering, T has a least element t ∈ T . We will contradict this by proving t(
√

2−
1) ∈ T is the least element.
Now since 1 <

√
2, 0 <

√
2− 1.

Additionally, 0 < t since t = k
√

2 for some k ∈ N, k 6= 0.
So 0 < t(

√
2− 1), so the condition t(

√
2− 1) = k

√
2 for some k ∈ N \ {0} is satisfied.

Next, since t ∈ T, ∃s ∈ N \ {0} such that t = s
√

2 and s
√

2 ∈ N.
Then t(

√
2− 1) = t

√
2− t = (s

√
2)
√

2− t = 2s− t.
But s ∈ N and t ∈ N, so 2s− t ∈ Z. Yet 2s− t = t(

√
2− 1) > 0, so 2s− t ∈ N \ {0}.

Now t(
√

2− 1) = t
√

2− t = t
√

2− s
√

2 = (t− s)
√

2.
But s, t ∈ N so t− s ∈ Z and (t− s)

√
2 = t(

√
2− 1) > 0.

So (t− s)
√

2 > 0, so t− s > 0 =⇒ t− s ∈ N \ {0}.
Overall, we know that t(

√
2− 1) > 0, t(

√
2− 1) ∈ N \ {0}, and t(

√
2− 1) = k

√
2 for some

k ∈ N \ {0}.
Then t(

√
2− 1) ∈ T .

Since
√

2 < 2 by our lemma,
√

2− 1 < 1 =⇒ t(
√

2− 1) < t.
So t(

√
2− 1 is a smaller element of T than t, so we have a contradiction.

∴
√

2 is irrational. �
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Overall, Well-Ordering can prove statements of the form ∀n, p(n) by assuming ∃n ∈ N such
that ¬p(n) and showing that a contradiction arises. In general, we can think of T as a set
of counterexamples to a statement. We use its least element to generate a contradiction.
Let’s do more proofs using Well-Ordering.

Theorem 2.4. ∀n > 1, n is divisible by a prime.

Proof. Assume otherwise. So ∃n > 1 such that n is not divisible by a prime.
So let T = {n ∈ N | n > 1 and n not divisible by a prime }.
By our hypothesis, T 6= ∅. Clearly T ⊂ N.
By Well-Ordering, T has a least element t such that t > 1 and t is not divisible by a prime.
By minimality of t, ∀n < t if 1 < n < t, then n /∈ T so n is divisible by a prime.
Case: suppose t is prime. Then t | t so t is divisible by a prime, namely itself.
So t /∈ T : contradiction.
Case: suppose t is composite. Then t = ab for some a, b > 1.
So 1 < a < t so a /∈ T by minimality of T .
So a is divisible by some prime p: p | a.
But a | t so by transitivity, p | t. So contradiction: t is divisible by a prime.
In both cases, we have a contradiction. So ∀n > 1, n is divisible by a prime. �

The following important corollary is a result of this theorem.

Corollary 2.5. (Euclid’s Theorem) There are infinitely many prime numbers.

Proof. Assume not. Then we have a finite list p1, p2, · · · , pk of primes.
Now consider n = p1p2 · · · pk + 1.
We know n > 1, so by the previous theorem, n is divisible by a prime p.
Since we listed all the primes, p = pi for some i ≤ k.
So pi | n, but pi | p1p2 · · · pk as well.
Since pi divides both n and p1p2 · · · pk, it also divides any linear combination of the two.
Then pi | n− p1p2 · · · pk.
But n− p1p2 · · · pk = 1. So pi | 1 =⇒ pi = 1, but pi > 1: contradiction.
∴ there are infinitely many primes. �
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3. Recursion and Induction

We can also use Well-Ordering to prove statements about recursive functions.

Definition 3.1. Recursion is when we define something for each n ∈ N with respect to
some initial values of n and a description of how to obtain the value at the next n using
the previous one(s).

For example, suppose f(0) = 1 is chosen as an initial value and we say that ∀n ≥ 0,
f(n + 1) = 2 · f(n). We can then prove ∀n ≥ 0, f(n) = 2n.

Proof. Suppose not. Then let T = {n ∈ N | f(n) 6= 2n}.
By our hypothesis, T 6= ∅ and clearly T ⊂ N.
By Well-Ordering, T has a least element t such that f(t) 6= 2t.
Now t 6= 0 since f(0) = 1 and 20 = 1. So t > 0.
By our recursive formula, f(t) = 2 · f(t− 1).
But since t− 1 < t and t was our least element, t− 1 /∈ T .
Now f(t− 1) = 2t−1 =⇒ f(t) = 2 · 2t−1 = 2t.
But contradiction: f(t) 6= 2t and f(t) = 2t. In other words, t ∈ T and t /∈ T .
∴ ∀n ≥ 0, f(n) = 2n. �

Another proof, this time about factorials: that ∀n ≥ 4, n! > 2n. We first prove it by
Well-Ordering, then by induction.

Proof. Assume not: suppose T = {n ∈ N | n ≥ 4 and n! ≤ 2n}.
By our hypothesis, T 6= ∅. It is clear that T ⊂ N.
By Well-Ordering, T has a least element t such that t ≥ 4 and t! < 2t.
Now 4! = 24 and 24 = 16 so 4 /∈ T =⇒ t > 4.
Recall t! = t(t− 1)! but since t > 4, t− 1 ≥ 4 so it’s still relevant to our claim.
Since t− 1 < t, t− 1 /∈ T . So (t− 1)! > 2t−1.
But since t! = t(t− 1)! > t · 2t−1 < 4 · 2t−1 since t > 4 and 4 · 2t−1 = 2t+1 > 2t.
So contradiction: t! ≤ 2t. �

Proof. Base case: consider n = 4. Since 4! = 24 > 24 = 16, 4! > 24.
Inductive hypothesis: assume for some n ≥ 4 that n! > 2n.
Inductive step: we want to show (n + 1)! > 2n+1.
Now (n + 1)! = (n + 1) · n! > (n + 1) · 2n > 2 · 2n = 2n+1.
So (n + 1)! > 2n+1.
Therefore by induction, ∀n ≥ 4, n! > 2n. �

In our inductive proof, we used one base case and an inductive step to show that the
hypothesis was true for all valid natural numbers. In some circumstances, multiple base
cases are needed. The main reason is that the recursive formula relevant to the problem
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uses multiple base cases. For example, we might have multiple base cases in proofs about
the Fibonacci sequence. Let’s do some examples to bound the Fibonacci sequence above
and below.

Theorem 3.2. ∀n ≥ 3, we can bound the Fibonacci sequence above by Fn ≤ 2n−2.

Proof. Base cases: consider n = 3 and n = 4.
Now F3 = 2 = 23−2 and F4 = 3 < 24−2 = 4 so F4 ≤ 24−2.
Inductive hypothesis: assume for some n ≥ 3, Fn ≤ 2n−2 and Fn+1 ≤ 2(n+1)−2 = 2n−1.
Inductive step: we want to show that Fn+2 ≤ 2n+2−2 = 2n.
Well Fn+2 = Fn + Fn+1 ≤ 2n−2 + 2n−1 < 2n−1 + 2n−1 = 2n.
Therefore by induction, ∀n ≥ 3, Fn ≤ 2n−2. �

Theorem 3.3. ∀n ≥ 3, we can bound the Fibonacci sequence below by Fn ≥ 2
n−1
2 .

Proof. Base cases: consider n = 3 and n = 4.
Now F3 = 2 ≥ 2(3−1)/2 = 2 and F4 = 3 ≥ 2(4−1)/2 = 2 ·

√
2 ≈ 2.8.

Inductive hypothesis: assume for some n ≥ 3, Fn ≥ 2
n−1
2 and Fn+1 ≥ 2

n
2 .

Inductive step: we want to show that Fn+2 ≥ 2
n+1
2 .

Well Fn+2 = Fn + Fn+1 > 2(n−1)/2 + 2n/2 > 2(n−1)/2 + 2(n−1)/2 = 2 · 2(n−1)/2 = 2
n+1
2 .

Therefore by induction, ∀n ≥ 3, Fn ≥ 2
n−1
2 . �
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4. The Division Algorithm

Theorem 4.1. (Division Algorithm) Let a, b ∈ Z with b > 0. Then there exists unique
integers q, r ∈ Z such that a = bq + r with 0 ≤ r < b. We call q the quotient and r the
remainder of the division.

Proof. (Existence)
Consider T = {a− bq | q ∈ Z and a− bq ≥ 0}, the set of remainders.
By definition, T ⊂ N. But why is T 6= ∅?
If a ≥ 0, choose q = −a. Then a− bq = a + ba ≥ 0. So in this case a− bq ∈ T .
If a < 0, choose q = a. Then a− bq = a− ba = a(1− b).
Since b > 0 and b ∈ Z, b ≥ 1. So −b ≥ −1.
Then 1− b ≥ 1− 1 = 0, but a < 0 so a(1− b) ≥ a · 0 = 0.
So in this case a− bq = a(1− b) ∈ T .
Then by Well-Ordering, T has a least element r. We want to show r − b ∈ T is smaller.
Since r ∈ T , we can choose q ∈ Z such that r = a− bq, and we have r ≥ 0.
So a = bq + r and we want to show r < b.
If r ≥ b, then r ≥ b > 0 and 0 ≤ r − b = a− bq − b = a− b(q + 1).
But r − b ≥ 0 and has form dividend − quotient · divisor, so r − b ∈ T .
Yet r − b < r, the smallest element of T . So we have a contradiction.
Therefore r < b and we found unique integers q, r ∈ Z. �

Proof. (Uniqueness)
Suppose a = bq + r and a = bq′ + r′ where 0 ≤ r < b and 0 ≤ r′ < b.
So bq + r = bq′ + r′ =⇒ bq − bq′ = r′ − r =⇒ b(q − q′) = r′ − r.
Then b | (r′ − r). Do we have bounds on r′ − r knowing 0 ≤ r < b and 0 ≤ r′ < b?
Now 0 ≤ r < b =⇒ 0 ≥ −r > −b. So −b < −r ≤ 0 and −b < r′ − r < b.
Since (r′ − r) | b, r′ − r is a multiple of b between −b and b, namely 0. So r′ = r.
Then since we had b(q − q′) = r′ − r = 0 and b > 0, q − q′ = 0 =⇒ q′ = q.
∴ r, q are unique. �

So when we run the division algorithm, we are looking for q such that bq is below a. Our
value of r then makes up for the difference. For example, for a = 100, b = 12, our quotient
and remainder would be q = 8 and r = 4.
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5. The Greatest Common Divisor

Definition 5.1. Let a, b ∈ Z not both 0. Then the greatest common divisor of a and
b, denoted gcd(a, b) is the largest divisor of both a and b. If d = gcd(a, b) then d | a, d | b,
and ∀c ∈ N if c | a and c | b then c ≤ d.

We know that the greatest common divisor of two numbers (both nonzero) exists because
1 ∈ { divisors of a} ∩ { divisors of b}. Additionally, since d | a and d | b, d ≤ |a| and
d ≤ |b|, so there are only finitely many common divisors. The following ideas are crucial
in studying the greatest common divisor.

Definition 5.2. a and b are relatively prime if and only if gcd(a, b) = 1.

Theorem 5.3. Let a, b ∈ Z not both 0. Then ∃x, y ∈ Z such that gcd(a, b) = ax + by.
Furthermore, gcd(a, b) is the least positive linear combination of a and b.

First we will show that the least positive linear combination of a and b, called d, has the
property that d ≤ gcd(a, b).

Proof. Let T = {ax + by | x, y ∈ Z, ax + by > 0}.
We previously showed that T 6= ∅ because a2 + b2 ∈ T .
By Well-Ordering, T has a least element d. So choose x, y ∈ Z such that d = ax + by.
We know d > 0, so we just want to show d = gcd(a, b).
By the division algorithm, a = dq + r for some q, r ∈ Z with 0 ≤ r < d.
So r = a− dq = a− (ax + by)q = a− axq − byq = a(1− xq) + b(−yq).
Then r is a linear combination of a and b and 0 ≤ r < d.
If r > 0, then r ∈ T , the set of positive linear combinations of a and b.
But r < d, the smallest element of T , which is a contradiction.
So r = 0 and a = dq, so d | a. A similar argument shows d | b.
Then d is a common divisor of a and b, so d ≤ gcd(a, b). �

Now we show d = gcd(a, b).

Proof. Suppose d = ax + by as before.
Since gcd(a, b) | a and gcd(a, b) | b, the greatest common divisor divides any linear combi-
nation of a and b.
In particular, gcd(a, b) | d.
Since d > 0, we must have gcd(a, b) ≤ d.
∴ gcd(a, b) = d. �

Corollary 5.4. Let a, b ∈ Z not both 0. If c is a divisor of a and b, then c | gcd(a, b).

Proof. We know gcd(a, b) = ax + by for some x, y ∈ Z.
Since c | a and c | b, c divides any linear combination of a and b.
So c | ax + by =⇒ c | gcd(a, b). �
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Note that our definition of the greatest common divisor only said that the g.c.d. was the
biggest divisor under ≤. This corollary tells us that the g.c.d. is the biggest divisor under
the relation | as well. Some additional important theorems follow.

Theorem 5.5. Let a, b, c ∈ Z with a 6= 0 and gcd(a, b) = 1. If a | bc then a | c.

Proof. Since gcd(a, b) = 1, pick x, y ∈ Z such that ax + by = 1.
So acx + bcy = c.
Then we have a | acx and by our hypothesis a | bc, so a | bcy.
Then a | acx + bcy =⇒ a | c. �

But what if gcd(a, b) 6= 1? We can attempt to modify our proof, multiplying through by
c

gcd(a,b) . We would get the equation:

cx

gcd(a, b)
a +

cy

gcd(a, b)
b = c

But a | cx
gcd(a,b)a is not guaranteed: cx

gcd(a,b) /∈ Z in general.

We can also extend the notion of the greatest common divisor to that of more than two
natural numbers. One potential extended definition of the g.c.d. might look like:

Definition 5.6. Let a1, a2, · · · , ak ∈ Z not all 0. The greatest common divisor of the
sequence, denoted gcd({a1, a2, · · · , ak}) is the greatest positive d that is a common divisor
of all the ai. Equivalently, d > 0,∀i, d | ai, and if c | ai, then c ≤ d.

Our previous proofs can be adapted to show that d is the least positive linear combination of
the a1, a2, · · · , ak, and that if c divides a1, a2, · · · , ak, then c divides gcd({a1, a2, · · · , ak}).
Back to considering the less general case of gcd(a, b), the following theorem often proves
useful.

Theorem 5.7. Let a, b ∈ Z not both 0. Set d = gcd(a, b). Then gcd(ad ,
b
d) = 1.

So for example, gcd(12, 66) = 6 and gcd(126 ,
66
6 ) = gcd(2, 11) = 1. Since the g.c.d. is the

greatest common divisor of a and b, then a
d and b

d share no common factors except 1.

Proof. We know d = ax + by, so 1 = a
dx + b

dy =⇒ 1 is a linear combination of the two
fractions, which reduce to integers since d | a and d | b.
By one of our previous theorems, the g.c.d. is the least positive linear combination of the
two numbers, and we found an x, y that made our linear combination equal to the least
positive natural number: 1.
∴ gcd(ad ,

b
d) = 1. �
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6. Linear Diophantine Equations

Definition 6.1. Let a, b, c ∈ Z with a, b not both 0. Then ax + by = c is called a linear
Diophantine equation. In general, Diophantine equations only allow their variables
to take on integer values. Sometimes we allow for rational values, but for the most part
we are interested in finding integer solutions.

Solutions (x, y) to linear Diophantine equations exist if and only if gcd(a, b) | c. If we are
able to find one solution (x0, y0), then we can use it to generate infinite equations. The
trick is the following:

c = ax0 + by0 = ax0 + (ab− ab) + by0

We can also add and subtract infinitely many multiples of ab:

c = ax0 + by0 = ax0 + tab− tab + by0 = a(x0 + tb) + b(y0 − tb)

Putting this all together and rearranging this final equation, we have the following useful
theorem.

Theorem 6.2. Let a, b, c ∈ Z with a, b not both 0. Then the equation ax + by = c has a
solution if and only if gcd(a, b) | c. Furthermore, given an initial solution (x0, y0), there
are infinitely many solutions given by x = x0 + b

gcd(a,b) t, y = y0 − a
gcd(a,b) t for parameter

t ∈ Z.

Proof. If ax + by = c has a solution then it is easy to show that gcd(a, b) | c because
gcd(a, b) | a and gcd(a, b) | b =⇒ gcd(a, b) | ax + by, a linear combination of a and b.
Conversely, if gcd(a, b) | c then c = k gcd(a, b) for some k ∈ Z.
So ∃u, v ∈ Z such that gcd(a, b) = au + bv.
Then c = k gcd(a, b) = a(ku) + b(ky), so a solution exists, namely (x0, y0) = (ku, ky).
We claim that all other solutions are given by the formula in the above theorem.
So ax + by = a(x0 + b

gcd(a,b) t) + b(y0 − a
gcd(a,b) t).

Expanded out, ax + by = ax0 + ab
gcd(a,b) t−

ab
gcd(a,b) t + by0 = ax0 + by0 = c.

We claim that these are the only solutions.
Let (x0, y0) denote our original solution and suppose we have a second solution (x∗, y∗).
Case: suppose a = 0 or b = 0.
Assume without loss of generality that a = 0.
Then by0 = c and by∗ = c, so y∗ = y0.
But how can we relate x0 and x∗? There appears to be no immediate relation, but we
know some information about t.
We want to find what values of t ∈ Z satisfy y∗ = y0 − a

gcd(a,b) t.

Since a = 0, any value of t gives y∗ = y0. We want to find what values of t then satisfy
x∗ = x0 + b

gcd(a,b) t.

We can simplify this to x∗ = x0 + t since gcd(a, b) = b and then take t = x− x0.
So we have a value of t that satisfies both equations: x = x0 + (x− x0).
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Case: suppose a 6= 0 or b 6= 0.
Then since ax0 + by0 = c and ax∗ + by∗ = c, we have ax0 + by0 = ax∗ + by∗.
Rearranging, a(x∗ − x0) = b(y0 − y∗).
Now a and b have a common factor, namely gcd(a, b). Dividing out both sides, we have:

a

gcd(a, b)
(x∗ − x0) =

b

gcd(a, b)
(y0 − y∗)

But a
gcd(a,b) ,

b
gcd(a,b) ∈ Z and a

gcd(a,b) | (
b

gcd(a,b))(y0 − y∗).

By one of our previous theorems, gcd( a
gcd(a,b) ,

b
gcd(a,b)) = 1.

So ( a
gcd(a,b)) | (y0 − y∗).

Choose t ∈ Z such that a
gcd(a,b) t = y0 − y∗ =⇒ y∗ = y0 − a

gcd(a,b) t.

We want to see if this value of t satisfies the other equation relating x∗ and x0.
Since a

gcd(a,b)(x
∗ − x0) = b

gcd(a,b)(y0 − y∗), we have:

a

gcd(a, b)
(x∗ − x0) =

b

gcd(a, b)

( a

gcd(a, b)
t
)

Canceling, we see that x∗ − x0 = b
gcd(a,b) t =⇒ x∗ = x0 + b

gcd(a,b) t.

So we have a valid value for t in this case as well. �



12 PHIL MAYER

7. The Euclidean Algorithm

Expressing the solutions to a linear Diophantine equation is clearly dependent on finding an
initial solution (x0, y0). We want to find a systematic approach to finding such an ordered
pair, if it exists. The process is relatively simple: given a solvable linear Diophantine
equation of the form ax + by = c, we want to find values of u, v ∈ Z such that au + bv =
gcd(a, b). We can then multiply both sides of the equation by some value of k ∈ Z such
that a(ku) + b(kv) = k gcd(a, b) = c.

This process is not necessary efficient by itself. We need efficient ways to find both gcd(a, b)
and the necessary values of u, v. Fortunately, we can use the Euclidean algorithm and the
Extended Euclidean algorithm to solve each problems, respectively.

Theorem 7.1. (Euclidean Algorithm) For a, b ∈ Z not both 0, we can find gcd(a, b) by the
following process: first, divide a by b to get a = bq0 + r0 where q0, r0 ∈ Z, 0 ≤ r0 < b by the
division algorithm. Then divide b by r0 to get b = r0q1 + r1 given similarly by the division
algorithm. Continue dividing the divisor ri−1 by the remainder ri of each division until the
remainder is 0. The previous remainder is equal to gcd(a, b).

In order to solve the second problem of finding values of u, v such that au+ bv = gcd(a, b),
we can use the following theorem:

Theorem 7.2. (Extended Euclidean Algorithm) For two integers a, b not both 0, we can
find values of u, v ∈ Z such that au+bv = gcd(a, b) where possible by running the Euclidean
algorithm many times and solving each intermediate equation (given by the division algo-
rithm) for the remainder. We can then combine the equations, solving for gcd(a, b) in
terms of a and b.

We should now prove the correctness of the Euclidean algorithm. To do so, we will need
the following lemmas:

Lemma 7.3. Let a, b ∈ Z with b > 0. Let r be the remainder from dividing a by b. Then
for some c ∈ Z, c | a and c | b if and only if c | b and c | r.

Proof. By the division algorithm, we have a = bq + r for q, r ∈ Z and 0 ≤ r < b.
If c | a and c | b then we know cx = a and cy = b, so a− bq = c(x− yq).
Then c | a− bq = r, so c | b and c | r.
If c | b and c | r, then c divides any linear combination of the two, namely bq − r = a.
Then c | a and c | b. �

Lemma 7.4. (Special case of the first lemma) If a = bq + r with 0 ≤ r < b, then
gcd(a, b) = gcd(b, r).

Proof. The first lemma says that the set of common divisors of a equals the set of common
divisors of b.
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Since the two sets are equal, their largest values (the greatest common divisors) are equal.
So gcd(a, b) = gcd(b, r). �

Theorem 7.5. Let a, b ∈ Z with a ≥ b > 0. Then the Euclidean algorithm on (a, b)
terminates after at most b divisions, returning gcd(a, b).

Proof. Assume otherwise. Then ∃a, b ∈ Z such that a ≥ b > 0 yet Euclid(a, b) either
doesn’t terminate, terminates after more than b divisions, or terminates but does not
return gcd(a, b).
Consider T = {n ∈ N | ∃m ∈ N with 0 < n ≤ m and any one of the failure conditions is
satisfied }.
So T is the set of all second coordinates of a counterexample pair.
Since counterexamples exist by our assumption, T 6= ∅.
Since T ⊂ N, we can pick a least element b ∈ T by Well-Ordering. In this case, b is the
least second coordinate of any counterexample pair.
Since b ∈ T , choose a corresponding a with 0 < b ≤ a and any one of the three failure
conditions satisfied for Euclid(a, b).
Run Euclid(a, b) once: so we have a = bq + r for 0 ≤ r < b.
Case: suppose r = 0. Then we stop and return b.
Since we terminate in this case, the first possibility is false.
Since 1 ≤ b, the second is false.
We returned b, and since r = 0, a = bq. So b | a =⇒ gcd(a, b) = b.
So we have a contradiction in this case.
Case: suppose r > 0. Then run Euclid(b, r).
Since r < b and b was the least second coordinate of a counterexample pair, r is not the
second coordinate of any counterexample.
So Euclid(b, r) runs as anticipated: it terminates in at most r divisions with gcd(b, r).
Overall, our call to Euclid(a, b) did one division then ran Euclid(b, r) which terminated.
So Euclid(a, b) terminated.
Since Euclid(a, b) did one division and Euclid(b, r) ran k divisions for k ≤ r, we ran
1 + k ≤ 1 + r ≤ 1 + (b− 1) = b divisions at most.
Finally, Euclid(a, b) returned the result of Euclid(b, r), namely gcd(b, r).
By our second lemma, gcd(a, b) = gcd(b, r).
So we have a contradiction in both cases. �


