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1. Vector Spaces and Bases

Suppose V is a vector space. Given some vectors in V , we can add them with every
nice property we might expect: associativity, an identity, inverses, and commutativity. So
(V,+) is a commutative group. We can also multiply vectors by scalars taken from a field,
typically R or C. The standard examples of vector spaces that we will discuss are therefore
Rn and Cn. Recall the following definitions about vector spaces:

Definition 1.1. A basis is a set B = {~b1, · · · ,~b2} of linearly independent vectors that

generate the vector space. Any vector ~v ∈ V can be written as ~v = c1~b1 + · · · + cn~bn, a
linear combination of the basis vectors, in at least one way.

Definition 1.2. We say that a set of vectors is linearly independent if and only if any
vector in V can be written as a linear combination of the basis vectors in at most one way.

So given some basis B, any vector ~v in the vector space can be written as a combination

of the basis vectors ~bi ∈ B in exactly one way. Though we can chose to work in any basis
we want, we typically work in the standard basis.

Definition 1.3. The standard basis for Rn, denoted E or En, is the set of n unique
vectors having ei = 1 for exactly one index i and ej = 0 for all other indices j. For
example, in R2, the standard basis is E2 = {[1, 0], [0, 1]}.

Given an arbitrary vector ~v ∈ Rn, we can write ~v as a linear combination of its basis
vectors. For example, given ~v = [a, b] in R2, we can write it as a linear combination of
standard basis vectors in E2 as follows:[

~v
]
E2

= a[1, 0] + b[0, 1]

We can also write ~v in terms of other bases. Suppose we want to express ~v in terms of
B = {[1, 1], [1,−1]}. In order to keep track of this change in representation, we denote ~v
with respect to B as [~v]B. To compute ~v’s new coordinates with respect to B, we solve the
following linear system for (x, y):[

~v
]
B

= x[1, 1] + y[1,−1]
1
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We can quickly solve the system by encapsulating it into the following matrix and row-
reducing. [

1 1 a
1 −1 b

]
rref−−−→

[
1 0 a+b

2
0 1 a−b

2

]
Here ~v’s new coordinates with respect to B are given on the right side of row the augmented
matrix. Overall, we have:

~v = [a, b]E2 =
[a+ b

2
,
a− b

2

]
B

For example, [3, 7]E2 = [5,−2]B. We can also apply a similar process to change the repre-
sentation of an arbitrary vector in B back to E2. First, we write [~v]B as a linear combination
of its basis vectors: [a+ b

2
,
a− b

2

]
B

=
a+ b

2
· [1, 1] +

a− b
2
· [1,−1]

=
[a+ b

2
+
a− b

2
,
a+ b

2
− a− b

2

]
=
[2a

2
,
2b

2

]
[a+ b

2
,
a− b

2

]
B

= [a, b]E2

We will see another technique for quickly changing basis in the next section.
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2. Linear Transformations and Change of Basis

Suppose we have some vector space V ⊂ Rn and a linear transformation T : V → V . Then
∀~u,~v ∈ V, T (~u+~v) = T (~u) + T (~v) and ∀c ∈ R, T (c~v) = cT (~v). Linear transformations can
also be represented as matrices. For example, consider the transformation:

T ([x, y]) = [x+ 2y, 3y]

This definition implicitly describes T ’s action on vectors with respect to the standard basis.
Generating its matrix representation (with respect to E2), denoted ME(T ), is therefore
easy: we take a 2× 2 matrix and place T (~e1) and T (~e2) down the columns:

ME(T ) =
[
T (~e1), T (~e2)

]
=

[
T

([
1
0

])
, T

([
0
1

])]
ME(T ) =

[
1 2
0 3

]
ME(T ) provides an equivalent way to apply T to vectors in the standard basis. We can also
express T as a matrix with respect to other bases. For example, consider the bases:

B1 = {[1, 0, 0], [1, 1, 0], [1, 1, 1]} and B2 = {[1, 1, 0], [1, 0, 1], [0, 1, 0]}
and the linear transformation:

T ([x, y, z]) = [2x− y, y + z, z − 3x]

In order to find the matrices A = MB(T ) and A′ = MB′(T ), we first need to represent T ’s
action on vectors in the two bases. For each basis vector in B, we see that:

T (~b1) = T

(1
0
0

) =

 2
0
−3


T (~b2) = T

(1
1
0

) =

 1
1
−3


T (~b3) = T

(1
1
1

) =

 1
2
−2


But each of these vectors is still in the standard basis. We can quickly bring each of these
vectors into B by multiplying by a change of basis, or change of coordinates, matrix.
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Definition 2.1. The change of basis matrix CB1→B2 brings vectors from B1 to B2. For
example, given [~v]B1 :

[~v]B2 = CB1→B2 · [~v]B1

We derive the change of basis matrix from B1 to B2 by augmenting the matrix repre-
sentation of B2 (the new basis) with the matrix representation of B1 (the old basis) and
row-reducing. [

MB2 |MB1

] rref−−−→
[
In | CB1→B2

]
Continuing our example, we find the change of basis matrix from the standard basis E3 to
B by:

[
MB |ME3

]
=

 1 1 1 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

 rref−−−→

 1 0 0 1 −1 0
0 1 0 0 1 −1
0 0 1 0 0 1


So our change of basis matrix is:

CE→B =

1 −1 0
0 1 −1
0 0 1


We then multiply it by each of our previous results T (~bi) to get [T (~bi)]B. The matrix
A = MB(T ) is then given by putting each product down the columns of a new matrix. The
same process can be applied to get A′ = MB′(T ). The two matrices are:

A =

 2 0 −1
3 4 4
−3 −3 −2


A′ =

 4 4 −1
−3 −2 0
−3 −3 2



Given a vector [~v]B, the product A · [~v]B represents T ’s action on ~v with respect to B.
Thus the product is a vector with respect B. There is a direct relationship between the
matrices A and A′ that allows for faster computation of either matrix. Though the process
of generating the matrix for T with respect to either basis is fairly straightforward, it is
cumbersome. The following theorem describes the relationship between the two matrices,
giving a formula for quickly computing one matrix given the other.

Theorem 2.2. Given two bases B and B′ and the change of basis matrix CB′→B, the
matrix representations of a linear transformation T with respect to both bases, A = MB(T )
and A′ = MB′(T ), are related by:

A′ = (CB′→B)−1 ·A · CB′→B
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It can also be shown that for a change of basis matrix CB′→B, its inverse acts in the
opposite direction. So (CB′→B)−1 = CB→B′ . This gives us the following corollary.

Corollary 2.3. Under the same conditions as the previous theorem, A and A′ are also
related by:

A′ = CB→B′ ·A · CB′→B

To finish our example, it can be seen that the two matrices are indeed related by both
formulas.
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3. Eigenvalues and Eigenvectors

Definition 3.1. Consider a linear transformation T : Rn → Rn. Then λ is an eigenvalue
for T if and only if ∃~v 6= ~0 with T (~v) = λ~v where ~v is an eigenvector for T associated

with λ. If A is a matrix with A~v = λ~v and ~v 6= ~0, then ~v is an eigenvector for A associated
with eigenvalue λ.

We can find eigenvalues and eigenvectors associated with a matrix A (and thus its corre-
sponding linear transformations as well) by solving the equation for λ:

det(A− λI) = 0

The derivation is as follows:

A~v = λ~v

A~v − λ~v = ~0

~v · (A− λI) = ~0, but since ~v 6= ~0:

A− λI = ~0

det(A− λI) = det(~0)

det(A− λI) = 0

While ~v = ~0 is always a solution to A~v = λ~v, nontrivial eigenvalue-eigenvector solutions
exist if and only if det(A− λI) 6= 0. Eigenvalues and eigenvectors also have the following
properties:

Theorem 3.2. If λ is an eigenvalue for a matrix A with eigenvector ~v, then λk is an
eigenvalue for Ak with eigenvector ~v for some k ∈ N with k > 0. Symbolically:

Ak~v = λk~v

Theorem 3.3. If A is an invertible matrix and λ 6= 0 is an eigenvalue for A with eigen-
vector ~v, then 1

λ is an eigenvalue for A−1 with eigenvector ~v.

Let’s apply some of this information and find some eigenvalues and eigenvectors. Consider
the matrix:

A =

[
2 3
2 1

]
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Then the eigenvalues of A are given by expanding out det(A− λI), factoring, and finding
its roots.

det(A− λI) =

∣∣∣∣2− λ 3
2 1− λ

∣∣∣∣
= (2− λ)(1− λ)− 2 · 3
= λ2 − 3λ− 4

det(A− λI) = (λ− 4)(λ+ 1)

We call this factorization the characteristic polynomial for A. It tells us that the eigenvalues
for A are λ = −1, 4.

Definition 3.4. The characteristic polynomial for a matrix A, given by p(λ) = det(A−
λI), has the eigenvalues for A as its roots.

Notice that A was 2 × 2, p(λ) is of degree 2, and there are two eigenvalues for A. To
find a basis for the space of eigenvectors associated with each λ, we solve the equation
(A− λI2)~x = ~0, plugging in λ. For instance, for λ = 4 we have:[

−2 3
2 −3

] [
x
y

]
=

[
0
0

]
If we augment A− λI2 with ~0 and row-reduce, we only find the trivial solution ~x = ~0. To
find nontrivial solutions, we solve the following system by hand:

−2x+ 3y = 0

2x− 3y = 0

Since the first equation is simply a scalar multiple of the second, we only need to find (x, y)
solutions to 2x− 3y = 0. One nontrivial solution that works is ~v = [3, 2]. This solution ~v
is therefore an eigenvector for A corresponding to λ = 4. Now if we repeat the process for
λ = −1, we have: [

3 3
2 2

] [
x
y

]
=

[
0
0

]
and since x+ y = 0,

[
x
y

]
=

[
1
−1

]
So ~v = [1,−1] is an eigenvector corresponding to λ = −1. As we will see, having found
the eigenvalues (and a basis for the eigenvectors associated with each eigenvalue) will be
useful to us in the next section. In the meantime, we can also prove the following theorem
relevant to the eigenvectors we found.
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Definition 3.5. The eigenspace of an eigenvalue λ, denoted Eλ, is the set of eigenvectors
corresponding to λ unioned with ~0.

Theorem 3.6. If λ is an eigenvalue for A, then the eigenspace Eλ is a vector space.

Proof. Let λ be an eigenvector for A.
Let ~v1, ~v2 ∈ Eλ.
Then A · (~v1 + ~v2) = A~v1 +A~v2 = λ~v1 + λ~v2 = λ(~v1 + ~v2), so ~v1 + ~v2 ∈ Eλ.
Now let c ∈ R.
Then A · (c~v) = cA~v = cλ~v = λ(c~v), so c~v ∈ Eλ.

Finally, ~0 ∈ Eλ by definition.
So Eλ is a vector space. �
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4. Diagonalization

Recall that matrix multiplication is a computationally expensive process. By hand, even
small matrices are tedious to multiply. On a computer, even the best algorithms are
trumped by the raw number of calculations required to multiply large matrices: even the
best algorithms can’t achieve an efficiency of O(n2). If we diagonalize a matrix, however,
we can at least improve the process of raising it to positive powers, achieving O(n) time
complexity.

Theorem 4.1. Suppose λ1, · · · , λn are scalars (λi ∈ C), ~v1, · · · , ~vn are nonzero vectors,
and A is an n×n matrix. Then let C = [~v1, · · · , ~vn] be a matrix with the vectors down the
columns. Let D be a matrix whose off-diagonal elements are 0 and its diagonal elements
are λ1, · · · , λn. Then AC = CD if and only if λ1, · · · , λn are the eigenvalues of A with ~vi
being an eigenvector associated with λi.

Proof. Suppose λ1, · · · , λn are eigenvalues for A, and C,D are defined as above.
Then AC = [A~v1, · · · , A~vn] and CD = [λ1~v1, · · · , λn~vn].
Now AC = CD if and only if ∀i with 0 < i ≤ n, λi~vi = A~vi.
But each λi is an eigenvalue for A, so AC = CD. �

Definition 4.2. Given two n × n matrices P and Q, we say that P is similar to Q if
and only if ∃C invertible such that P = C−1QC. It can be shown that similarity is an
equivalence relation. Furthermore, P and Q are similar if and only if they represent the
same linear transformation relative to different bases.

We can now begin discussing diagonalization, starting with the following definition. We
then present an important corollary to the previous theorem.

Definition 4.3. A is diagonalizable if and only if A is similar to a diagonal matrix.

Corollary 4.4. A is diagonalizable if and only if there exists a basis for Rn (or Cn)
consisting of eigenvectors corresponding to eigenvalues of A.

For example, in the previous section we found that A had eigenvalues λ = −1, 4 with
respective eigenvectors [3, 2], [1,−1]. We can then choose D,C such that:

D =

[
−1 0
0 4

]
, C =

[
3 1
2 −1

]
In this case, we can then invert C and observe that A = C−1AC, so A is similar to D. In
some cases, however, we can only find a matrix C where AC = CD. This case is typically
caused by the eigenvectors being dependent: C becomes non-invertible.
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As mentioned previously, the main benefit of diagonalization is that we can raise matrices
to positive powers much more efficiently.

Theorem 4.5. Suppose A = C−1DC. Then for some k ∈ N, Ak = C−1DkC.

Proof.

Ak = (C−1DC)k

= (C−1DC)(C−1DC) · · · (C−1DC)

= C−1 ·D · (CC−1) ·D · · ·D · (CC−1) ·D · C
= C−1 ·D · · ·D · C

Ak = C−1 ·Dk · C
�

We can quickly determine if a matrix is diagonalizable by employing some of the following
theorems.

Theorem 4.6. Suppose A has n distinct eigenvalues λi. Then {~v1, · · · , ~vn} are indepen-
dent, so A is diagonalizable.

To understand the next theorem about diagonalizability, we first define some additional
properties of eigenvalues.

Definition 4.7. The algebraic multiplicity of an eigenvalue λ for a matrix A is the
number of times λ appears as a root of the characteristic equation p(λ) for A.

Definition 4.8. The geometric multiplicity of an eigenvalue λ for A is the dimension
of λ’s eigenspace: dim(Eλ).

Theorem 4.9. If A is a matrix with eigenvalue λ, then the geometric multiplicity of λ is
less than or equal to its algebraic multiplicity.

Theorem 4.10. A matrix A is diagonalizable if and only if for all eigenvalues λi, the
geometric multiplicity of λi equals its algebraic multiplicity.
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5. The Jordan-Canonical Form

Though the previous section discussed conditions for a given matrix A to be similar to a
diagonal matrix, sometimes A simply cannot be diagonalized. Fortunately, we will see that
every matrix is similar to something almost as good: a Jordan canonical form. To begin
investigating Jordan canonical forms, we first need to define a Jordan block.

Definition 5.1. A Jordan block, typically denoted J , is a matrix in which the diagonal
elements are equal, the elements immediately above the diagonal are 1, and all other
elements are 0.

Some examples of Jordan blocks include:

J1 =
[
λ
]

J2 =

[
λ 1
0 λ

]
J3 =

λ 1 0
0 λ 1
0 0 λ


Definition 5.2. A Jordan canonical form is a matrix consisting of Jordan blocks down
the diagonal, placed corner-to-corner. A 4 × 4 example of a Jordan canonical form (with
two identical 2× 2 blocks) would resemble:

J =


2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2


Now given some n×n matrix A, we construct its similar Jordan canonical form by setting
the diagonal elements of a new n × n matrix J equal to the eigenvalues of A (repeating
some if necessary based on their algebraic multiplicities). We then examine the properties
of A to determine the number of Jordan blocks in J and their respective sizes. We can
also examine a Jordan canonical form and deduce facts about matrices that it might be
similar to. For example, in the matrix above, we know that matrices similar to J would
have λ = 4 as an eigenvalue repeated four times in its characteristic polynomial.

To further investigate how Jordan canonical forms behave, let’s find a Jordan canonical
form similar to the following matrix:

A =


3 0 1 1
0 3 0 2
0 0 3 0
0 0 0 3


It is clear that the eigenvalues for A are λ = 3, repeated four times. Now if we define
B = A− 3I, then we have:

B =


0 0 1 1
0 0 0 2
0 0 0 0
0 0 0 0


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We can now ask: what does B do to vectors in E4, the standard basis? If we multiply B
by each vector, we see that:

B~e1 = ~0, B~e2 = ~0, B~e3 = ~e1, B~e4 = ~e1 + 2~e2

We can now begin assembling “strings” of vectors that more succinctly describe this behav-
ior. At this point, the following strings provide the most useful information for us:

~e3 → ~e1 → ~0, ~e2 → ~0

Since we can describe B’s action on the standard basis vectors by two strings, we can
now claim that A’s similar Jordan canonical form J has two Jordan blocks. Interestingly,
nullity(B) = 2 as well. We can almost fully characterize J ; we just need to know if its
blocks are of sizes 3 × 3 and 1 × 1, or 2 × 2 and 2 × 2. To find out, we square B. In this
case, it turns out that B2 = 0, which means that nullity(B2) = 4. In addition, B2’s action
on vectors in E4 can be described by the following strings:

~e3 → ~e1 → ~0, ~e4 → ~e2 → ~0

So the Jordan canonical form J similar to A has two Jordan blocks, each 2 × 2 and
corresponding to λ = 3:

J =


3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3


Overall, our findings are supported by the following theorem.

Theorem 5.3. Let A be a matrix with eigenvalue λ. Let J be its corresponding Jordan
canonical form. Then the number of Jordan blocks in J is equal to the number of strings,
the geometric multiplicity of λ, and nullity(J − λI). Furthermore, the size of each block is
equal to the length of its corresponding string.

Furthermore, we can also state the major theorem summarizing our exploration of Jordan
canonical forms.

Theorem 5.4. Let A be a square matrix. Then there exists an invertible matrix C such
that the matrix J = C−1AC is a Jordan canonical form. This Jordan canonical form is
unique, except for the order of the Jordan blocks of which it is composed.


