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1. Background

For my final project, I chose to explore the Lorenz model, known otherwise as the
Lorenz equations. Originally introduced by Edward Norton Lorenz, a pioneer in
the study of chaos, the model’s three equations were originally a simplification of
the Navier-Stokes equations, made because of the weaker computing power back in
the 1960’s. Despite oversimplifying the Navier-Stokes equations, Lorenz discovered
a system with rich dynamics and chaotic behavior, given certain combinations of
the initial conditions and system parameters. I chose to study this topic because
the Lorenz attractor is one of the most visually recognizable chaotic models, and I
recognized its image in the textbook, which I was able to duplicate as I will show
shortly.

Though the problem was originally studied in the context of weather and fluid me-
chanics, the Lorenz model can be used to describe a wide variety of physical systems.
Its three equations use three parameters: σ, r, b > 0. Though these are occasionally
given physical meaning, it is best to continue generally. The system’s three differen-
tial equations using these parameters are:

dx

dt
= σ(y − x)

dy

dt
= −xz + rx− y

dz

dt
= xy − bz

While we can explore the behavior of the system with any positive values of σ, r,
and b, most physicists and mathematicians who have explored the Lorenz model use
σ = 10 and b = 8

3
≈ 2.6667. Given this convention, the system appears deceptively

simple; it proves to have considerably complex behavior regardless by just modifying
r and the initial conditions x0, y0, z0.
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2. Numerical Methods

In order to solve the three differential equations numerically, we can apply the Euler
method to the each equation, approximating x, y, and z at a range of times. Working
up from the initial values x0, y0, z0, some time step size ∆t, and a number of points
n, we can calculate xi, yi, zi from i = 1 to i = n− 1 as:

xi = xi−1 +
dx

dt
∆t

yi = yi−1 +
dy

dt
∆t

zi = zi−1 +
dz

dt
∆t

We can then apply the definitions of dx
dt
, dy
dt
, dz
dt

as described in the previous section
to arrive at:

xi = xi−1 + σ(yi−1 − xi−1)∆t

yi = yi−1 + (−xi−1zi−1 + rxi−1 − yi−1)∆t

zi = zi−1 + (xi−1yi−1 − bzi−1)∆t

We can derive this solution by recalling that for some arbitrary number of points
n and points xi (over indices 1 ≤ i ≤ n − 1), we can estimate dx

dt
using backward

differencing:
dx

dt
≈ xi − xi−1

∆t

With only a few steps of simple algebraic manipulation, we arrive at the Euler
method.

xi ≈ xi−1 +
dx

dt
∆t

We then apply this to solve the differential equations dy
dt

and dz
dt

for y and z similarly,

then plug in the appropriate definitions of dy
dt

and dz
dt

based on the Lorenz model.
In this particular problem, the Euler-Cromer method does not suit our application,
since we have three first-order ODEs (whereas the Euler-Cromer method is used to
solve second-order ODEs). As the book describes, some of the factors in the Lorenz
model also serve the same purpose as the damping term and the driving force in
the case of the pendulum; given small enough values of ∆t, the associated errors
contributed by these terms will tend to cancel, eliminating the need to use methods
like Euler-Cromer. As we will see shortly in the investigation of stability, this can
cause some interesting behaviors when graphing the system.
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3. Results

Overall, I had success reproducing the graphics in the book using my program. For
example, the following graph was generated using N = 50, 000, ∆t = 0.001, σ = 10.0,
b = 2.6667, r = 25.0, and initial conditions x0 = 1.0, y0 = z0 = 0.0, and has the
expected appearance of the Lorenz attractor.

Figure 1. The Lorenz attractor, seen here as the projection of the
solution set on the x-z axis. This can be compared to figure 3.16 in
the Giordano/Nakanishi textbook.

My program starts by taking in user input for the number of points N ; the precision
∆t; the parameters σ, r, and b; and finally the initial conditions x0, y0, and z0. It
then initializes arrays for time t and the solutions x, y, and z. After setting the
initial conditions and solving the Lorenz equations by the Euler method, I chose to
graph x, y, and z versus t on the first row of a 2× 3 grid, followed by the projections
onto the x-y, x-z, and y-z planes on the the second row.
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Interestingly, the algorithm does require a high level of precision to produce reason-
able results. I tested my program with precisions of ∆t = 2.0, 1.0, 0.1, 0.01, 0.001,
and 0.0001, and the program failed for all ∆t ≥ 0.01, crashing while graphing the six
outputs, as some of their data entries began to assume NaN values. Despite this,
my implementation renders accurate results for very small values of ∆t. For example
in the graph below, taken from the same execution of my program as figure 1, we
can see the clear oscillation pictured in the textbook.

Figure 2. The graph z vs. t after solving by the Euler method. This
can be compared to figure 3.15 in the Giordano/Nakanishi textbook.

As a final note on my results, I found that the Lorenz model does indeed show
considerable sensitivity to the initial conditions provided by the user. The following
graph shows the projection of two solutions, plotted on the same graph. Their
number of points, value of ∆t, and parameters used were all identical. The only
difference between the two solutions is the quantity of ε = 0.01 added to the x0
coordinate of the solution graphed in red. Despite this minor change in the initial
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conditions, the clear difference between the two graphs makes the system’s sensitivity
more visible.

Figure 3. Two graphs of the x-z axis with an ε = 0.01 difference in
their initial x-coordinate.

Overall, my program appears to correctly solve the problem, but future versions
might focus on attempting to correct its behavior for larger (less precise) values of
∆t. Alternatively, the textbook also mentions the Runge-Kutta method, which may
be able to allow the user to solve the differential equations with less precision. It
would also be worthwhile to compare the algorithmic efficiency and error of the two
approaches. It could turn out, for instance, that the Euler method is actually better
suited for this problem given its O(N) time efficiency. Future versions might also
focus on supporting larger values of N and smaller values of ∆t. I discuss this further
in the next section.
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4. Stability of the Numerical Method

As mentioned in the previous sections, the Euler method provides an accurate solu-
tion to the Lorenz equations for sufficiently low values of ∆t. I found that overall,
the maximum precision still yielding accurate results is ∆t = 0.01. The number of
points to plot, N , generally only affects the appearance of the graph, since graphs
with too few points will tend to look sparse or incomplete (like in the image below).
To counteract this, the solution might seem to be to add more points.

For example, when I ran my program with N = 100, 000 and ∆t = 0.0001, the graphs
did not have enough points to exhibit chaos, as demonstrated below.

Figure 4. The projection of the solution set onto the x-z axis. While
this should resemble figure 1, there were not enough points to exhibit
chaotic behavior. While we can actually begin to see chaotic behavior
for values of N as large as 250, 000, this still does not lend us much in-
sight into the system’s overall behavior as we evolve the system further.
If we go much past this value of N , we get a segmentation fault.
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Yet, when I attempted to increase the number of points to N = 1, 000, 000 with
the same precision, the execution terminated quickly with segmentation fault. My
best guess is that this can be attributed to the operating system preventing the
program from using more memory, rather than error in the Euler method; arrays
with 1, 000, 000 elements are no doubt taxing on the system’s memory. Instead, it
might be better to use a different data structure to store the arrays for t and the
x, y, and z solutions. I would be interested to see whether or not using linked lists
would crash the program, since arrays are contiguous blocks of memory while linked
lists are not.

Finally, altering the initial conditions and parameter values ends up having little
impact on the correctness and accuracy of the Euler method. In my implementation
of the program, I detected if the user entered negative values of σ, r, and b (which
are all defined to be positive in the book’s discussion of the problem) and then
set them to preset default values, so I was unable to investigate the potentially
strange behavior that may result from the three parameters assuming negative values.
I did experiment with setting one, two, or three of the parameters equal to zero
and generally had uninteresting results. I found that this generally produced very
uninteresting graphs (mostly linear and exponential).

I also experimented with multiplying one or many of the parameters by constant
factors, but generally did not find any interesting results here either. In one of my
executions of the program (using N = 50, 000, ∆t = 0.001, σ = 5.0, b = 1.333,
r = 12.50, and x0 = 1.0, y0 = z0 = 0.0), the (x, y, z) solution appeared to converge
to approximately (−4,−4, 12), spiraling into the point as t increased. Preserving the
same values of N , ∆t, and initial conditions, my execution of the program with each
of the parameters doubled matched closely with the original graphs seen in figures 1
and 2.


