STUDY GUIDE: ABSTRACT ALGEBRA

PHIL MAYER

1. GrouPs
Definition 1.1. x is a binary operation if and only if * : § x S — S is one-to-one and
onto.

Definition 1.2. (G, x) is a group if and only if * is associative, has an identity in the set
G, each g € G has an inverse in G, and G is closed under the operation.

Definition 1.3. A group G is abelian (or commutative) if and only if Va,b € G, ab = ba.

Groups have the following properties:
(1) Cancellation law: Va,b,c € G,ab =ac = b=c.

(2) Solution uniqueness: “linear” equations of the form ax = b have a unique solution

in G.
(3) Uniqueness of identity: e € G is the only valid identity.
(4) Uniqueness of inverses: each a € G has a unique inverse a~! € G.

(5) Inverse of a product: Va,b € G, (ab)™t = b~ ta™L.

2. SUBGROUPS AND CycLic GROUPS

Definition 2.1. H C G is a subgroup of G if and only if H is closed under G’s binary
operation, is associative, its identity is in H, and for each h € H, h~' € H. We denote H
as a subgroup of G by H < G.

Definition 2.2. G is said to be a cyclic group generated by a € G if and only if
G=(a)={a"|neZ}.

Theorem 2.3. Any subgroup of a cyclic group is cyclic. This is a general statement that
is difficult to prove, so below we will show that any subgroup of (Z,+) is cyclic.

Proof. Suppose H < GG on addition.

Case: if H = {0}, then 0 generates H, so H is trivially cyclic.

Case: if H # {0}, then we want to show 3d € H such that (d) = H.
1
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Since H # {0}, H contains a least positive integer d since all non-empty subsets of Z have
a least element.

By closure of H, (d) C H. Now we need to show H C (d).

So let h € H. We want h = cd for some ¢ € Z.

Divide h by d: then we have a quotient ¢ and remainder r such that h = dq + r with
0<r<d.

Observe r € H since r = h — dq and h,dq € H by closure.

But since d is the smallest integer in H and r < d, r = 0.

Soh=dq = h e (d).

Then H C (d), so H = (d).

. H is cyclic. ]

Theorem 2.4. There is exactly one cyclic subgroup of Z,, for each divisor d of n, generated
by 5.
Theorem 2.5. Some element | € Z is a generator for Zy if and only if ged({l,n}) = 1.

Theorem 2.6. Integersl, k € Z generate the same subgroup of Zy, if and only if ged({l,n}) =
ged({k,n}).

Theorem 2.7. Let p € P, the prime numbers. Then Z, has p — 1 generators and two
distinct subgroups: {0} and Z,,.

Theorem 2.8. Let G be a cyclic group generated by a. If the order of G is infinite, then
G = (Z,+). If G is finite with order n, then G = (Zy,+).

3. PERMUTATION GROUPS

Definition 3.1. A permutation is a one-to-one, onto function that rearranges a set.
Composition of functions is well-known to be associative, have an identity, have inverses,
and be closed.

Theorem 3.2. Let A # @ and call S4 the collection of all permutations on a set A. Then
S is a group under function composition.

Theorem 3.3. If n > 2, then the collection of all even permutations of {1,...,n} forms

a subgroup A, of the symmetric group S, of order %‘

Proof. It can be shown that A, is closed, has identity e = (1,2)(1,2), and all inverses have
an even number of elements.

To show |A4,| = ”7!, we need to show |A,,| = |B,| by constructing a one-to-one, onto function
between them.
So let f: A, — By, by f(o0) =0(1,2). Then show one-to-one and onto. O

Theorem 3.4. No permutation in S, can be expressed as both a product of an even and
an odd number of transpositions.
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4. COSETS

Definition 4.1. Let a € G and suppose H < G. Then the left coset of H in G is the set
aH ={ah | h € H}.
Cosets have the following key properties:

(1) |aH| = |bH| for all cosets aH, bH of H. Can be proven by constructing a one-to-one
and onto function between.

(2) aH =bH or aHNbH = @.

(3) H is always a trivial coset of itself.
Theorem 4.2 (The Theorem of LaGrange). Suppose G is a finite group and H < G. Then
|H| divides |G]|.

Proof. Let G be a finite group and suppose H is a subgroup of G.
Now decompose G into a union of its left cosets. Assume there are r. Then we have:

G = O CLl'H
i=1

Expanded out, |G| = |a1H UasHU---Ua, H|.

Now recall that for two general sets A and B, |AU B| = |A|+ |B| — |AN B|.

But since a;H Na;H = @ Vi # j, |G| = |a1H| + |a2H| + - - - + |a,- H]|.

Then since all cosets have the same order, |G| = r|H|.

o, |H| divides |G]|. O

Definition 4.3. The index of H in G, [G : H], is the number of distinct costs of H in G.

Corollary 4.4 (The Theorem of LaGrange). % =[G : H|

5. HOMOMORPHISMS AND ISOMORPHISMS

Definition 5.1. The function ¢ : G — G’ is a homomorphism from G to G’ if and only
if ¢(ab) = ¢p(a)p(b) Va,b € G.

Definition 5.2. ¢ : G — G’ is an isomorphism from G to G’ if and only if ¢ is a
one-to-one, onto homomorphism.

Recall that ¢ is one-to-one if and only if Va1, 29 € G where ¢(x1) = ¢(z2), we have z; = xa.

¢ is onto if and only if V¢’ € G’, g € G such that ¢’ = ¢(g).

Theorem 5.3. Assume f: G — G’ is a homomorphism. Then:

(1) fle)=¢
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(2) fla™) = f(a)™*
(3) If H <G, then f(H) <G
(4) If K <G, then f~Y(K) <G

Definition 5.4. Let f : G — G’ be a homomorphism. Then the kernel of f, ker(f), is the
set of elements of G which are sent to the identity in G’. So ker(f) = {a € G |; f(a) = €'}.

Theorem 5.5. ker(f) < G and % = |image of G under f|

6. FACTOR GROUPS
Definition 6.1. H < G is normal, denoted H < G, if and only if aH = Ha Va € G, or
equivalently, a='hia = hy for hi, ho € H.
Theorem 6.2. H < G if and only if [G : H] = 2.

Theorem 6.3. Let H < G. Then the left coset multiplication (aH)(bH) = (ab)H s
well-defined if and only if H < G. The cosets form a group under multiplication: G/H.

Theorem 6.4 (The Fundamental Theorem of Homomorphisms). The theorem relates fac-
tor groups, normal subgroups, and kernels of homomorphisms in three parts:

(1) If f : G — G’ is an onto homomorphism, then ker(f) < G and G/ker(f) is a
group.

(2) If H< G and f:G— G/H by f(g) = gH, then f is a homomorphism.
(3) If f : G — G is an onto homomorphism, then G/ ker(f) = G'.



