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1. Groups

Definition 1.1. ∗ is a binary operation if and only if ∗ : S × S → S is one-to-one and
onto.

Definition 1.2. (G, ∗) is a group if and only if ∗ is associative, has an identity in the set
G, each g ∈ G has an inverse in G, and G is closed under the operation.

Definition 1.3. A group G is abelian (or commutative) if and only if ∀a, b ∈ G, ab = ba.

Groups have the following properties:

(1) Cancellation law: ∀a, b, c ∈ G, ab = ac =⇒ b = c.

(2) Solution uniqueness: “linear” equations of the form ax = b have a unique solution
in G.

(3) Uniqueness of identity: e ∈ G is the only valid identity.

(4) Uniqueness of inverses: each a ∈ G has a unique inverse a−1 ∈ G.

(5) Inverse of a product: ∀a, b ∈ G, (ab)−1 = b−1a−1.

2. Subgroups and Cyclic Groups

Definition 2.1. H ⊂ G is a subgroup of G if and only if H is closed under G’s binary
operation, is associative, its identity is in H, and for each h ∈ H, h−1 ∈ H. We denote H
as a subgroup of G by H ≤ G.

Definition 2.2. G is said to be a cyclic group generated by a ∈ G if and only if
G = 〈a〉 = {an | n ∈ Z}.

Theorem 2.3. Any subgroup of a cyclic group is cyclic. This is a general statement that
is difficult to prove, so below we will show that any subgroup of (Z,+) is cyclic.

Proof. Suppose H ≤ G on addition.
Case: if H = {0}, then 0 generates H, so H is trivially cyclic.
Case: if H 6= {0}, then we want to show ∃d ∈ H such that 〈d〉 = H.
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Since H 6= {0}, H contains a least positive integer d since all non-empty subsets of Z have
a least element.
By closure of H, 〈d〉 ⊂ H. Now we need to show H ⊂ 〈d〉.
So let h ∈ H. We want h = cd for some c ∈ Z.
Divide h by d: then we have a quotient q and remainder r such that h = dq + r with
0 ≤ r < d.
Observe r ∈ H since r = h− dq and h, dq ∈ H by closure.
But since d is the smallest integer in H and r < d, r = 0.
So h = dq =⇒ h ∈ 〈d〉.
Then H ⊂ 〈d〉, so H = 〈d〉.
∴ H is cyclic. �

Theorem 2.4. There is exactly one cyclic subgroup of Zn for each divisor d of n, generated
by n

d .

Theorem 2.5. Some element l ∈ Z is a generator for Zn if and only if gcd({l, n}) = 1.

Theorem 2.6. Integers l, k ∈ Z generate the same subgroup of Zn if and only if gcd({l, n}) =
gcd({k, n}).

Theorem 2.7. Let p ∈ P, the prime numbers. Then Zp has p − 1 generators and two
distinct subgroups: {0} and Zp.

Theorem 2.8. Let G be a cyclic group generated by a. If the order of G is infinite, then
G ∼= (Z,+). If G is finite with order n, then G ∼= (Zn,+).

3. Permutation Groups

Definition 3.1. A permutation is a one-to-one, onto function that rearranges a set.
Composition of functions is well-known to be associative, have an identity, have inverses,
and be closed.

Theorem 3.2. Let A 6= ∅ and call SA the collection of all permutations on a set A. Then
SA is a group under function composition.

Theorem 3.3. If n ≥ 2, then the collection of all even permutations of {1, . . . , n} forms
a subgroup An of the symmetric group Sn of order n!

2 .

Proof. It can be shown that An is closed, has identity e = (1, 2)(1, 2), and all inverses have
an even number of elements.
To show |An| = n!

2 , we need to show |An| = |Bn| by constructing a one-to-one, onto function
between them.
So let f : An → Bn by f(σ) = σ(1, 2). Then show one-to-one and onto. �

Theorem 3.4. No permutation in Sn can be expressed as both a product of an even and
an odd number of transpositions.
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4. Cosets

Definition 4.1. Let a ∈ G and suppose H ≤ G. Then the left coset of H in G is the set
aH = {ah | h ∈ H}.

Cosets have the following key properties:

(1) |aH| = |bH| for all cosets aH, bH of H. Can be proven by constructing a one-to-one
and onto function between.

(2) aH = bH or aH ∩ bH = ∅.

(3) H is always a trivial coset of itself.

Theorem 4.2 (The Theorem of LaGrange). Suppose G is a finite group and H ≤ G. Then
|H| divides |G|.

Proof. Let G be a finite group and suppose H is a subgroup of G.
Now decompose G into a union of its left cosets. Assume there are r. Then we have:

G =
r⋃

i=1

aiH

Expanded out, |G| = |a1H ∪ a2H ∪ · · · ∪ arH|.
Now recall that for two general sets A and B, |A ∪B| = |A|+ |B| − |A ∩B|.
But since aiH ∩ ajH = ∅ ∀i 6= j, |G| = |a1H|+ |a2H|+ · · ·+ |arH|.
Then since all cosets have the same order, |G| = r|H|.
∴ |H| divides |G|. �

Definition 4.3. The index of H in G, [G : H], is the number of distinct costs of H in G.

Corollary 4.4 (The Theorem of LaGrange). |G||H| = [G : H]

5. Homomorphisms and Isomorphisms

Definition 5.1. The function φ : G→ G′ is a homomorphism from G to G′ if and only
if φ(ab) = φ(a)φ(b) ∀a, b ∈ G.

Definition 5.2. φ : G → G′ is an isomorphism from G to G′ if and only if φ is a
one-to-one, onto homomorphism.

Recall that φ is one-to-one if and only if ∀x1, x2 ∈ G where φ(x1) = φ(x2), we have x1 = x2.
φ is onto if and only if ∀g′ ∈ G′, ∃g ∈ G such that g′ = φ(g).

Theorem 5.3. Assume f : G→ G′ is a homomorphism. Then:

(1) f(e) = e′
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(2) f(a−1) = f(a)−1

(3) If H ≤ G, then f(H) ≤ G′

(4) If K ≤ G′, then f−1(K) ≤ G

Definition 5.4. Let f : G→ G′ be a homomorphism. Then the kernel of f , ker(f), is the
set of elements of G which are sent to the identity in G′. So ker(f) = {a ∈ G |; f(a) = e′}.

Theorem 5.5. ker(f) ≤ G and |G|
| ker(f)| = |image of G under f |

6. Factor Groups

Definition 6.1. H ≤ G is normal, denoted H C G, if and only if aH = Ha ∀a ∈ G, or
equivalently, a−1h1a = h2 for h1, h2 ∈ H.

Theorem 6.2. H C G if and only if [G : H] = 2.

Theorem 6.3. Let H ≤ G. Then the left coset multiplication (aH)(bH) = (ab)H is
well-defined if and only if H C G. The cosets form a group under multiplication: G/H.

Theorem 6.4 (The Fundamental Theorem of Homomorphisms). The theorem relates fac-
tor groups, normal subgroups, and kernels of homomorphisms in three parts:

(1) If f : G → G′ is an onto homomorphism, then ker(f) C G and G/ ker(f) is a
group.

(2) If H C G and f : G→ G/H by f(g) = gH, then f is a homomorphism.

(3) If f : G→ G′ is an onto homomorphism, then G/ ker(f) ∼= G′.


